Page 26 - Read Online
P. 26
Page 64 Franz et al. J Transl Genet Genom 2020;4:50-70 I https://doi.org/10.20517/jtgg.2020.13
S A 2011;108:10502-7.
19. Agris PF, Eruysal ER, Narendran A, Vare VYP, Vangaveti S, et al. Celebrating wobble decoding: half a century and still much is new.
RNA Biol 2018;15:537-53.
20. Vare VY, Eruysal ER, Narendran A, Sarachan KL, Agris PF. Chemical and conformational diversity of modified nucleosides affects trna
structure and function. Biomolecules 2017;7:29.
21. Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016;44:8020-40.
22. Johansson MJ, Esberg A, Huang B, Bjork GR, Bystrom AS. Eukaryotic wobble uridine modifications promote a functionally redundant
decoding system. Mol Cell Biol 2008;28:3301-12.
23. Rezgui VA, Tyagi K, Ranjan N, Konevega AL, Mittelstaet J, et al. tRNA tKUUU, tQUUG, and tEUUC wobble position modifications
fine-tune protein translation by promoting ribosome A-site binding. Proc Natl Acad Sci U S A 2013;110:12289-94.
24. Vendeix FA, Murphy FVt, Cantara WA, Leszczynska G, Gustilo EM, et al. Human tRNA(Lys3)(UUU) is pre-structured by natural
modifications for cognate and wobble codon binding through keto-enol tautomerism. J Mol Biol 2012;416:467-85.
25. Ranjan N, Rodnina MV. Thio-modification of tRNA at the wobble position as regulator of the kinetics of decoding and translocation on
the ribosome. J Am Chem Soc 2017;139:5857-64.
26. Roovers M, Oudjama Y, Kaminska KH, Purta E, Caillet J, et al. Sequence-structure-function analysis of the bifunctional enzyme MnmC
that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA. Proteins 2008;71:2076-85.
27. Nedialkova DD, Leidel SA. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell
2015;161:1606-18.
28. Tukenmez H, Xu H, Esberg A, Bystrom AS. The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes.
Nucleic Acids Res 2015;43:9489-99.
29. Klassen R, Bruch A. Schaffrath R. Independent suppression of ribosomal +1 frameshifts by different tRNA anticodon loop modifications.
RNA Biol 2017;14:1252-9.
30. Woese CR, Olsen GJ, Ibba M, Soll D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol
Rev 2000;64:202-36.
31. Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med 2014;20:306-14.
32. Pechmann S, Willmund F, Frydman J. The ribosome as a hub for protein quality control. Mol Cell 2013;49:411-21.
33. Antonellis A, Green ED. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 2008;9:87-107.
34. Meyer-Schuman R, Antonellis A. Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human
disease. Hum Mol Genet 2017;26:R114-27.
35. Sissler M, Gonzalez-Serrano LE, Westhof E. Recent advances in mitochondrial aminoacyl-tRNA synthetases and disease. Trends Mol
Med 2017;23:693-708.
36. Fuchs SA, Schene IF, Kok G, Jansen JM, Nikkels PGJ, et al. Aminoacyl-tRNA synthetase deficiencies in search of common themes.
Genet Med 2019;21:319-30.
37. Freude K, Hoffmann K, Jensen LR, Delatycki MB, des Portes V, et al. Mutations in the FTSJ1 gene coding for a novel
S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Am J Hum Genet 2004;75:305-9.
38. Hamel BC, Smits AP, van den Helm B, Smeets DF, Knoers NV, et al. Four families (MRX43, MRX44, MRX45, MRX52) with
nonspecific X-linked mental retardation: clinical and psychometric data and results of linkage analysis. Am J Med Genet 1999;85:290-
304.
39. Hirata A, Okada K, Yoshii K, Shiraishi H, Saijo S, et al. Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a
novel binding interface for tRNA recognition. Nucleic Acids Res 2019;47:10942-55.
40. Jensen LR, Garrett L, Holter SM, Rathkolb B, Racz I, et al. A mouse model for intellectual disability caused by mutations in the X-linked
2’Omethyltransferase Ftsj1 gene. Biochim Biophys Acta Mol Basis Dis 2019;1865:2083-93.
41. Ramser J, Winnepenninckx B, Lenski C, Errijgers V, Platzer M, et al. A splice site mutation in the methyltransferase gene FTSJ1 in
Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9). J Med Genet 2004;41:679-83.
42. Ropers HH, Hoeltzenbein M, Kalscheuer V, Yntema H, Hamel B, et al. Nonsyndromic X-linked mental retardation: where are the missing
mutations? Trends Genet 2003;19:316-20.
43. Wang R, Lei T, Fu F, Li R, Jing X, et al. Application of chromosome microarray analysis in patients with unexplained developmental
delay/intellectual disability in South China. Pediatr Neonatol 2019;60:35-42.
44. Willems P, Vits L, Buntinx I, Raeymaekers P, Van Broeckhoven C, et al. Localization of a gene responsible for nonspecific mental
retardation (MRX9) to the pericentromeric region of the X chromosome. Genomics 1993;18:290-4.
45. Pintard L, Kressler D, Lapeyre B. Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-
L-methionine in vitro. Mol Cell Biol 2000;20:1370-81.
46. Abbasi-Moheb L, Mertel S, Gonsior M, Nouri-Vahid L, Kahrizi K, et al. Mutations in NSUN2 cause autosomal-recessive intellectual
disability. Am J Hum Genet 2012;90:847-55.
47. Brzezicha B, Schmidt M, Makalowska I, Jarmolowski A, Pienkowska J, et al. Identification of human tRNA:m5C methyltransferase
catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res
2006;34:6034-43.
48. Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol
2006;16:971-81.
49. Khan MA, Rafiq MA, Noor A, Hussain S, Flores JV, et al. Mutation in NSUN2, which encodes an RNA methyltransferase, causes