Page 26 - Read Online
P. 26

Page 64                                                        Franz et al. J Transl Genet Genom 2020;4:50-70  I  https://doi.org/10.20517/jtgg.2020.13

                   S A 2011;108:10502-7.
               19.  Agris PF, Eruysal ER, Narendran A, Vare VYP, Vangaveti S, et al. Celebrating wobble decoding: half a century and still much is new.
                   RNA Biol 2018;15:537-53.
               20.  Vare VY, Eruysal ER, Narendran A, Sarachan KL, Agris PF. Chemical and conformational diversity of modified nucleosides affects trna
                   structure and function. Biomolecules 2017;7:29.
               21.  Grosjean H, Westhof E. An integrated, structure- and energy-based view of the genetic code. Nucleic Acids Res 2016;44:8020-40.
               22.  Johansson MJ, Esberg A, Huang B, Bjork GR, Bystrom AS. Eukaryotic wobble uridine modifications promote a functionally redundant
                   decoding system. Mol Cell Biol 2008;28:3301-12.
               23.  Rezgui VA, Tyagi K, Ranjan N, Konevega AL, Mittelstaet J, et al. tRNA tKUUU, tQUUG, and tEUUC wobble position modifications
                   fine-tune protein translation by promoting ribosome A-site binding. Proc Natl Acad Sci U S A 2013;110:12289-94.
               24.  Vendeix FA, Murphy FVt, Cantara WA, Leszczynska G, Gustilo EM, et al. Human tRNA(Lys3)(UUU) is pre-structured by natural
                   modifications for cognate and wobble codon binding through keto-enol tautomerism. J Mol Biol 2012;416:467-85.
               25.  Ranjan N, Rodnina MV. Thio-modification of tRNA at the wobble position as regulator of the kinetics of decoding and translocation on
                   the ribosome. J Am Chem Soc 2017;139:5857-64.
               26.  Roovers M, Oudjama Y, Kaminska KH, Purta E, Caillet J, et al. Sequence-structure-function analysis of the bifunctional enzyme MnmC
                   that catalyses the last two steps in the biosynthesis of hypermodified nucleoside mnm5s2U in tRNA. Proteins 2008;71:2076-85.
               27.  Nedialkova DD, Leidel SA. Optimization of codon translation rates via tRNA modifications maintains proteome integrity. Cell
                   2015;161:1606-18.
               28.  Tukenmez H, Xu H, Esberg A, Bystrom AS. The role of wobble uridine modifications in +1 translational frameshifting in eukaryotes.
                   Nucleic Acids Res 2015;43:9489-99.
               29.  Klassen R, Bruch A. Schaffrath R. Independent suppression of ribosomal +1 frameshifts by different tRNA anticodon loop modifications.
                   RNA Biol 2017;14:1252-9.
               30.  Woese CR, Olsen GJ, Ibba M, Soll D. Aminoacyl-tRNA synthetases, the genetic code, and the evolutionary process. Microbiol Mol Biol
                   Rev 2000;64:202-36.
               31.  Torres AG, Batlle E, Ribas de Pouplana L. Role of tRNA modifications in human diseases. Trends Mol Med 2014;20:306-14.
               32.  Pechmann S, Willmund F, Frydman J. The ribosome as a hub for protein quality control. Mol Cell 2013;49:411-21.
               33.  Antonellis A, Green ED. The role of aminoacyl-tRNA synthetases in genetic diseases. Annu Rev Genomics Hum Genet 2008;9:87-107.
               34.  Meyer-Schuman R, Antonellis A. Emerging mechanisms of aminoacyl-tRNA synthetase mutations in recessive and dominant human
                   disease. Hum Mol Genet 2017;26:R114-27.
               35.  Sissler M, Gonzalez-Serrano LE, Westhof E. Recent advances in mitochondrial aminoacyl-tRNA synthetases and disease. Trends Mol
                   Med 2017;23:693-708.
               36.  Fuchs SA, Schene IF, Kok G, Jansen JM, Nikkels PGJ, et al. Aminoacyl-tRNA synthetase deficiencies in search of common themes.
                   Genet Med 2019;21:319-30.
               37.  Freude K, Hoffmann K, Jensen LR, Delatycki MB, des Portes V, et al. Mutations in the FTSJ1 gene coding for a novel
                   S-adenosylmethionine-binding protein cause nonsyndromic X-linked mental retardation. Am J Hum Genet 2004;75:305-9.
               38.  Hamel BC, Smits AP, van den Helm B, Smeets DF, Knoers NV, et al. Four families (MRX43, MRX44, MRX45, MRX52) with
                   nonspecific X-linked mental retardation: clinical and psychometric data and results of linkage analysis. Am J Med Genet 1999;85:290-
                   304.
               39.  Hirata A, Okada K, Yoshii K, Shiraishi H, Saijo S, et al. Structure of tRNA methyltransferase complex of Trm7 and Trm734 reveals a
                   novel binding interface for tRNA recognition. Nucleic Acids Res 2019;47:10942-55.
               40.  Jensen LR, Garrett L, Holter SM, Rathkolb B, Racz I, et al. A mouse model for intellectual disability caused by mutations in the X-linked
                   2’Omethyltransferase Ftsj1 gene. Biochim Biophys Acta Mol Basis Dis 2019;1865:2083-93.
               41.  Ramser J, Winnepenninckx B, Lenski C, Errijgers V, Platzer M, et al. A splice site mutation in the methyltransferase gene FTSJ1 in
                   Xp11.23 is associated with non-syndromic mental retardation in a large Belgian family (MRX9). J Med Genet 2004;41:679-83.
               42.  Ropers HH, Hoeltzenbein M, Kalscheuer V, Yntema H, Hamel B, et al. Nonsyndromic X-linked mental retardation: where are the missing
                   mutations? Trends Genet 2003;19:316-20.
               43.  Wang R, Lei T, Fu F, Li R, Jing X, et al. Application of chromosome microarray analysis in patients with unexplained developmental
                   delay/intellectual disability in South China. Pediatr Neonatol 2019;60:35-42.
               44.  Willems P, Vits L, Buntinx I, Raeymaekers P, Van Broeckhoven C, et al. Localization of a gene responsible for nonspecific mental
                   retardation (MRX9) to the pericentromeric region of the X chromosome. Genomics 1993;18:290-4.
               45.  Pintard L, Kressler D, Lapeyre B. Spb1p is a yeast nucleolar protein associated with Nop1p and Nop58p that is able to bind S-adenosyl-
                   L-methionine in vitro. Mol Cell Biol 2000;20:1370-81.
               46.  Abbasi-Moheb L, Mertel S, Gonsior M, Nouri-Vahid L, Kahrizi K, et al. Mutations in NSUN2 cause autosomal-recessive intellectual
                   disability. Am J Hum Genet 2012;90:847-55.
               47.  Brzezicha B, Schmidt M, Makalowska I, Jarmolowski A, Pienkowska J, et al. Identification of human tRNA:m5C methyltransferase
                   catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res
                   2006;34:6034-43.
               48.  Frye M, Watt FM. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol
                   2006;16:971-81.
               49.  Khan MA, Rafiq MA, Noor A, Hussain S, Flores JV, et al. Mutation in NSUN2, which encodes an RNA methyltransferase, causes
   21   22   23   24   25   26   27   28   29   30   31