Page 12 - Read Online
P. 12

Page 223                 Mejia et al. J Transl Genet Genom 2024;8:216-24  https://dx.doi.org/10.20517/jtgg.2024.11

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2024.


               REFERENCES
               1.       Barth PG, Scholte HR, Berden JA, et al. An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil
                   leucocytes. J Neurol Sci 1983;62:327-55.  DOI  PubMed
               2.       Kelley  RI,  Cheatham  JP,  Clark  BJ,  et  al.  X-linked  dilated  cardiomyopathy  with  neutropenia,  growth  retardation,  and  3-
                   methylglutaconic aciduria. J Pediatr 1991;119:738-47.  DOI
               3.       Zegallai HM, Hatch GM. Barth syndrome: cardiolipin, cellular pathophysiology, management, and novel therapeutic targets. Mol Cell
                   Biochem 2021;476:1605-29.  DOI  PubMed
               4.       Xu Y, Malhotra A, Ren M, Schlame M. The enzymatic function of tafazzin. J Biol Chem 2006;281:39217-24.  DOI  PubMed
               5.       Xu Y, Kelley RI, Blanck TJ, Schlame M. Remodeling of cardiolipin by phospholipid transacylation. J Biol Chem 2003;278:51380-5.
                   DOI  PubMed
               6.       Valianpour F, Mitsakos V, Schlemmer D, et al. Monolysocardiolipins accumulate in Barth syndrome but do not lead to enhanced
                   apoptosis. J Lipid Res 2005;46:1182-95.  DOI
               7.       Xu Y, Sutachan JJ, Plesken H, Kelley RI, Schlame M. Characterization of lymphoblast mitochondria from patients with Barth
                   syndrome. Lab Invest 2005;85:823-30.  DOI  PubMed
               8.       Gonzalvez F, D’Aurelio M, Boutant M, et al. Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis
                   inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Biochim Biophys Acta 2013;1832:1194-
                   206.  DOI
               9.       Mejia EM, Zegallai H, Bouchard ED, Banerji V, Ravandi A, Hatch GM. Expression of human monolysocardiolipin acyltransferase-1
                   improves mitochondrial function in Barth syndrome lymphoblasts. J Biol Chem 2018;293:7564-77.  DOI  PubMed  PMC
               10.      Reyland ME, Jones DN. Multifunctional roles of PKCδ: opportunities for targeted therapy in human disease. Pharmacol Ther
                   2016;165:1-13.  DOI  PubMed  PMC
               11.      Qvit N, Mochly-Rosen D. The many hats of protein kinase Cδ: one enzyme with many functions. Biochem Soc Trans 2014;42:1529-
                   33.  DOI  PubMed  PMC
               12.      Kim YK, Hammerling U. The mitochondrial PKCδ/retinol signal complex exerts real-time control on energy homeostasis. Biochim
                   Biophys Acta Mol Cell Biol Lipids 2020;1865:158614.  DOI  PubMed  PMC
               13.      Yang Q, Langston JC, Tang Y, Kiani MF, Kilpatrick LE. The role of tyrosine phosphorylation of protein kinase C delta in infection
                   and inflammation. Int J Mol Sci 2019;20:1498.  DOI  PubMed  PMC
               14.      Acin-Perez R, Hoyos B, Zhao F, et al. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in
                   mitochondrial energy homoeostasis. FASEB J 2010;24:627-36.  DOI  PubMed  PMC
               15.      Agarwal P, Cole LK, Chandrakumar A, et al. Phosphokinome analysis of Barth syndrome lymphoblasts identify novel targets in the
                   pathophysiology of the disease. Int J Mol Sci 2018;19:2026.  DOI  PubMed  PMC
               16.      Mecklenbräuker I, Saijo K, Zheng NY, Leitges M, Tarakhovsky A. Protein kinase Cdelta controls self-antigen-induced B-cell
                   tolerance. Nature 2002;416:860-5.  DOI  PubMed
               17.      Mejia EM, Zinko JC, Hauff KD, Xu FY, Ravandi A, Hatch GM. Glucose uptake and triacylglycerol synthesis are increased in barth
                   syndrome lymphoblasts. Lipids 2017;52:161-5.  DOI  PubMed
               18.      Sparagna GC, Johnson CA, McCune SA, Moore RL, Murphy RC. Quantitation of cardiolipin molecular species in spontaneously
                   hypertensive heart failure rats using electrospray ionization mass spectrometry. J Lipid Res 2005;46:1196-204.  DOI  PubMed
               19.      Chang W, Zhang M, Chen L, Hatch GM. Berberine inhibits oxygen consumption rate independent of alteration in cardiolipin levels in
                   H9c2 cells. Lipids 2017;52:961-7.  DOI
               20.      Kagan VE, Tyurina YY, Mikulska-Ruminska K, et al. Anomalous peroxidase activity of cytochrome c is the primary pathogenic target
                   in Barth syndrome. Nat Metab 2023;5:2184-205.  DOI
               21.      Lee CF, Chen YC, Liu CY, Wei YH. Involvement of protein kinase C delta in the alteration of mitochondrial mass in human cells
                   under oxidative stress. Free Radic Biol Med 2006;40:2136-46.  DOI  PubMed
               22.      Acin-Perez R, Hoyos B, Gong J, et al. Regulation of intermediary metabolism by the PKCδ signalosome in mitochondria. FASEB J
                   2010;24:5033-42.  DOI
               23.      Duncan AL. Monolysocardiolipin (MLCL) interactions with mitochondrial membrane proteins. Biochem Soc Trans 2020;48:993-1004.
                   DOI  PubMed  PMC
               24.      Ceddia RB, Sweeney G. Creatine supplementation increases glucose oxidation and AMPK phosphorylation and reduces lactate
                   production in L6 rat skeletal muscle cells. J Physiol 2004;555:409-21.  DOI  PubMed  PMC
               25.      Liang Z, Ralph-Epps T, Schmidtke MW, et al. Upregulation of the AMPK-FOXO1-PDK4 pathway is a primary mechanism of
                   pyruvate dehydrogenase activity reduction and leads to increased glucose uptake in tafazzin-deficient cells. Sci Rep 2024;14:11497.
   7   8   9   10   11   12   13   14   15   16   17