Page 109 - Read Online
P. 109
Keung et al. J Transl Genet Genom 2019;3:8. I https://doi.org/10.20517/jtgg.2019.03 Page 7 of 9
DECLARATIONS
Authors’ contributions
Design: Keung EZ, Somaiah N
Literature research: Keung EZ, Somaiah N
Manuscript writing: Keung EZ, Somaiah N
Manuscript editing: Keung EZ, Somaiah N
Manuscript revision: Keung EZ, Somaiah N
Availability of data and materials
Not applicable.
Financial support and sponsorship
Dr. Keung is supported by National Institutes of Health (NIH) (T32 CA009599).
Conflicts of interest
Both authors declared that there are no conflicts of interest.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2019.
REFERENCES
1. Crago AM, Dickson MA. Liposarcoma: multimodality management and future targeted therapies. Surg Oncol Clin N Am 2016;25:761-73.
2. Crago AM, Singer S. Clinical and molecular approaches to well differentiated and dedifferentiated liposarcoma. Curr Opin Oncol
2011;23:373-8.
3. Abeshouse A, Adebamowo C, Adebamowo SN, Akbani R, Akeredolu T, et al. Comprehensive and integrated genomic characterization of
adult soft tissue sarcomas. Cell 2017;171:950-65.e28.
4. Jones RL, Lee ATJ, Thway K, Huang PH. Clinical and molecular spectrum of liposarcoma. J Clin Oncol 2018;36:151-9.
5. Somaiah N, Beird HC, Barbo A, Mills Shaw KR, Wang WL, et al. Targeted next generation sequencing of well-differentiated/
dedifferentiated liposarcoma reveals novel gene amplifications and mutations. Oncotarget 2018;9:19891-9.
6. Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature 1997;387:296-9.
7. Kubbutat MH, Jones SN, Vousden KH. Regulation of p53 stability by Mdm2. Nature 1997;387:299-303.
8. Zhang Z, Wang H, Li M, Rayburn ER, Agrawal S, et al. Stabilization of E2F1 protein by MDM2 through the E2F1 ubiquitination pathway.
Oncogene 2005;24:7238-47.
9. Jin Y, Lee H, Zeng SX, Dai MS, Lu H. MDM2 promotes p21waf1/cip1 proteasomal turnover independently of ubiquitylation. EMBO J
2003;22:6365-77.
10. Wang SP, Wang WL, Chang YL, Wu CT, Chao YC, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of
Slug. Nat Cell Biol 2009;11:694-704.
11. Kanojia D, Nagata Y, Garg M, Lee DH, Sato A, et al. Genomic landscape of liposarcoma. Oncotarget 2015;6:42429-44.
12. Barretina J, Taylor BS, Banerji S, Ramos AH, Lagos-Quintana M, et al. Subtype-specific genomic alterations define new targets for soft-
tissue sarcoma therapy. Nat Genet 2010;42:715-21.
13. Beird HC, Wu CC, Ingram DR, Wang WL, Alimohamed A, et al. Genomic profiling of dedifferentiated liposarcoma compared to matched
well-differentiated liposarcoma reveals higher genomic complexity and a common origin. Cold Spring Harb Mol case Stud 2018;4.
pli:a002386.
14. Chibon F, Mariani O, Derré J, Malinge S, Coindre JM, et al. A subgroup of malignant fibrous histiocytomas is associated with genetic
changes similar to those of well-differentiated liposarcomas. Cancer Genet Cytogenet 2002;139:24-9.
15. Chibon F, Mariani O, Derré J, Mairal A, Coindre J-M, et al. ASK1 (MAP3K5) as a potential therapeutic target in malignant fibrous
histiocytomas with 12q14-q15 and 6q23 amplifications. Genes Chromosomes Cancer 2004;40:32-7.
16. Mariani O, Brennetot C, Coindre JM, Gruel N, Ganem C, et al. JUN oncogene amplification and overexpression block adipocytic