Page 49 - Read Online
P. 49

Page 14 of 16                                             Weidner et al. J Transl Genet Genom 2019;3:2. I  https://doi.org/10.20517/jtgg.2018.30

                   of patients with severe asthma and persistent airway eosinophilia. J Allergy Clin Immunol 2016;137:75-86.
               52.  Singh PB, Pua HH, Happ HC, Schneider C, von Moltke J, et al. MicroRNA regulation of type 2 innate lymphoid cell homeostasis and
                   function in allergic inflammation. J Exp Med 2017;214:3627-43.
               53.  Knolle MD, Chin SB, Rana BMJ, Englezakis A, Nakagawa R, et al. MicroRNA-155 protects group 2 innate lymphoid cells from apoptosis
                   to promote Type-2 immunity. Front Immunol 2018;9:2232.
               54.  Mattes J, Collison A, Plank M, Phipps S, Foster PS. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the
                   development of allergic airways disease. Proc Natl Acad Sci U S A 2009;106:18704-9.
               55.  Collison A, Mattes J, Plank M, Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145
                   is comparable to glucocorticoid treatment. J Allergy Clin Immunol 2011;128:160-7.
               56.  Sharma A, Kumar M, Ahmad T, Mabalirajan U, Aich J, et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine
                   model. J Appl Physiol (1985) 2012;113:459-64.
               57.  Li JJ, Tay HL, Maltby S, Xiang Y, Eyers F, et al. MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein
                   phosphatase 2A activity. J Allergy Clin Immunol 2015;136:462-73.
               58.  Kim RY, Horvat JC, Pinkerton JW, Starkey MR, Essilfie AT, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by
                   amplifying phosphoinositide 3-kinase-mediated suppression of histone deacetylase 2. J Allergy Clin Immunol 2017;139:519-32.
               59.  Kumar RK, Hitchins MP, Foster PS. Epigenetic changes in childhood asthma. Dis Model Mech 2009;2:549-53.
               60.  Lü J, Qian J, Chen F, Tang X, Li C, et al. Differential expression of components of the microRNA machinery during mouse organogenesis.
                   Biochem Biophys Res Commun 2005;334:319-23.
               61.  Dong J, Jiang G, Asmann YW, Tomaszek S, Jen J, et al. MicroRNA networks in mouse lung organogenesis. PLoS One 2010;5:e10854.
               62.  Williams AE, Moschos SA, Perry MM, Barnes PJ, Lindsay MA. Maternally imprinted microRNAs are differentially expressed during
                   mouse and human lung development. Dev Dyn 2007;236:572-80.
               63.  Lu Y, Thomson JM, Wong HY, Hammond SM, Hogan BL. Transgenic over-expression of the microRNA miR-17-92 cluster promotes
                   proliferation and inhibits differentiation of lung epithelial progenitor cells. Dev Biol 2007;310:442-53.
               64.  Bhaskaran M, Wang Y, Zhang H, Weng T, Baviskar P, et al. MicroRNA-127 modulates fetal lung development. Physiol Genomics
                   2009;37:268-78.
               65.  Liu F, Qin HB, Xu B, Zhou H, Zhao DY. Profiling of miRNAs in pediatric asthma: upregulation of miRNA-221 and miRNA-485-3p. Mol
                   Med Rep 2012;6:1178-82.
               66.  Jiang C, Yu H, Sun Q, Zhu W, Xu J, et al. Extracellular microRNA-21 and microRNA-26a increase in body fluids from rats with antigen
                   induced pulmonary inflammation and children with recurrent wheezing. BMC Pulm Med 2016;16:50.
               67.  Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J
                   Immunol 2009;182:4994-5002.
               68.  Sawant DV, Yao W, Wright Z, Sawyers C, Tepper RS, et al. Serum MicroRNA-21 as a biomarker for allergic inflammatory disease in
                   children. Microrna 2015;4:36-40.
               69.  Hammad Mahmoud Hammad R, Hamed DHED, Eldosoky MAER, Ahmad AAES, Osman HM, et al. Plasma microRNA-21, microRNA-
                   146a and IL-13 expression in asthmatic children. Innate Immun 2018;24:171-9.
               70.  Papadopoulos NG, Arakawa H, Carlsen KH, Custovic A, Gern J, et al. International consensus on (ICON) pediatric asthma. Allergy
                   2012;67:976-97.
               71.  Dong X, Xu M, Ren Z, Gu J, Lu M, et al. Regulation of CBL and ESR1 expression by microRNA-223p, 513a-5p and 625-5p may impact
                   the pathogenesis of dust mite-induced pediatric asthma. Int J Mol Med 2016;38:446-56.
               72.  Midyat L, Gulen F, Karaca E, Ozkinay F, Tanac R, et al. MicroRNA expression profiling in children with different asthma phenotypes.
                   Pediatr Pulmonol 2016;51:582-7.
               73.  Nakano T, Inoue Y, Shimojo N, Yamaide F, Morita Y, et al. Lower levels of hsa-mir-15a, which decreases VEGFA, in the CD4+ T cells of
                   pediatric patients with asthma. J Allergy Clin Immunol 2013;132:1224-7.
               74.  Lee CG, Link H, Baluk P, Homer RJ, Chapoval S, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2-
                   mediated sensitization and inflammation in the lung. Nat Med 2004;10:1095-103.
               75.  Asai K, Kanazawa H, Kamoi H, Shiraishi S, Hirata K, et al. Increased levels of vascular endothelial growth factor in induced sputum in
                   asthmatic patients. Clin Exp Allergy 2003;33:595-9.
               76.  Hossny E, El-Awady H, Bakr S, Labib A. Vascular endothelial growth factor overexpression in induced sputum of children with bronchial
                   asthma. Pediatr Allergy Immunol 2009;20:89-96.
               77.  Davis JS, Sun M, Kho AT, Moore KG, Sylvia JM, et al. Circulating microRNAs and association with methacholine PC20 in the childhood
                   asthma management program (CAMP) cohort. PLoS One 2017;12:e0180329.
               78.  Kho AT, McGeachie MJ, Moore KG, Sylvia JM, Weiss ST, et al. Circulating microRNAs and prediction of asthma exacerbation in
                   childhood asthma. Respir Res 2018;19:128.
               79.  Kho AT, Sharma S, Davis JS, Spina J, Howard D, et al. Circulating microRNAs: association with lung function in asthma. PLoS One
                   2016;11:e0157998.
               80.  Licari A, Castagnoli R, Brambilla I, Marseglia A, Tosca MA, et al. Asthma endotyping and biomarkers in childhood asthma. Pediatr Allergy
                   Immunol Pulmonol 2018;31:44-55.
               81.  Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012;18:716-25.
               82.  Pinkerton M, Chinchilli V, Banta E, Craig T, August A, et al. Differential expression of microRNAs in exhaled breath condensates of
                   patients with asthma, patients with chronic obstructive pulmonary disease, and healthy adults. J Allergy Clin Immunol 2013;132:217-9.
   44   45   46   47   48   49   50   51   52   53   54