Page 21 - Read Online
P. 21
Lu et al. J Mater Inf 2022;2:11 I http://dx.doi.org/10.20517/jmi.2022.15 Page 17 of 18
25. Katayama I, Shimatani H, Kozuka Z. Thermodynamic study of solid CuNi and NiMo alloys by E.M.F. Measurements using the solid
electrolyte. J Japan Inst Metals 1973;37:50915. DOI
26. Meshkov LL, Guzei LS, Sokolovskaya EM. Sokolovskaia, thermodynamics of nickelmolybdenum alloys. Russ J Phys Chem
1975;49:11289. Available from: https://www.osti.gov/biblio/4035422 [Last accessed on 29 Jul 2022]
27. Tsai HL. Thesis, University of Tennessee, 1983.
28. Pejryd L. Experimental study of phase equilibria and thermodynamic stabilitie in the system NiMoTiO2O, Department of Inorganic
Chemistry, University of Umeå, Umeå, Sweden, 1985.
29. Pejryd L. Phase relations and stabilities in the metalrich part of the NiMoO system in the temperature range 12001400 K. Scand J
Metall 1985;14:268272. DOI
30. Koyama K, Hashimoto Y, Suzuki K, Kameyama S. Determination of the standard gibbs free energy of formation of NiMo 2B 2 and the
activity of the NiMo binary system by EMF measurement. J Japan Inst Metals 1989;53:1838. DOI
31. Wang Y, Woodward C, Zhou S, Liu Z, Chen L. Structural stability of NiMo compounds from firstprinciples calculations. Scripta Mate
rialia 2005;52:1720. DOI
32. Zhou S, Wang Y, Jiang C, Zhu J, Chen L, Liu Z. Firstprinciples calculations and thermodynamic modeling of the NiMo system. Mater
Sci Eng 2005;397:28896. DOI
33. Yaqoob K, Crivello J, Joubert J. Thermodynamic modeling of the MoNi system. Calphad 2018;62:21522. DOI
34. Khan F, Asgar M, Nordblad P. Magnetization and magnetocrystalline anisotropy of NiMo single crystal alloys. J Magn Magn Mater
1997;174:1216. DOI
35. Ghosh S, Das N, Mookerjee A. Magnetic properties of NiMo singlecrystal alloys; theory and experiment. J Phys : Condens Matter
1998;10:1177380. DOI
36. J.M. Dickinson, L.S. Richardson, Trans. ASM 51 (1958) 10551071. DOI
37. A.G. Knapton, J. Inst. Met. 87 (19581959) 6264.
38. E.M. Savitskii, M.A. Tylkina, K.B. Povarova, Zh. Neorg. Khim. 1959;4:42434.
39. E.M. Savitskii, M.A. Tylkina, K.B. Povarova, Russ. J. Inorg. Chem. 4 (1959) 190195.
40. Farzadfar S, Levesque M, Phejar M, Joubert J. Thermodynamic assessment of the molybdenum rhenium system. Calphad 2009;33:502
10. DOI
41. Kodentsov AA, Dunae SF, Slyusarenko EM, Sokolovskaya EM, Priimak AN. Phase equilibria in the rheniummolybdenumnickel system.
Vestnik Moskovskogo Universiteta Ser.2 Khimiya, 1987;28:1538. DOI
42. Borisov VA, Yaschenko AI, Slyusarenko EM, Dunaev SF. Moscow Univ. Chem. Bull. 1992;47:769.
43. Slyusarenko E, Borisov V, Sofin M, Kerimov E, Chastukhin A. Determination of phase equilibria in the system NiVCrMoRe at 1425
K using the graph method. J Alloys Compd 1999;284:17189. DOI
44. Feng Y. Determination of isothermal sections of the CoNbNi and NiMoRe ternary systems. Rare Metals 2008;27:838. DOI
45. Yaqoob K, Crivello JC, Joubert JM. Comparison of the site occupancies determined by combined Rietveld refinement and density func
tional theory calculations: example of the ternary MoNiRe phase. Inorg Chem 2012;51:30718. DOI PubMed
46. Chekhovskoi VY, Peletskii VE. Thermophysical properties of 75Ni15Mo10Re alloy. High Temperature 2003;41:2218. DOI
47. Frisk K. A thermodynamic evaluation of the MoNi system. Calphad 1990;14:31120. DOI
48. Cui Y, Jin Z, Lu X. Experimental study and thermodynamic assessment of the NiMoTa ternary system. Metall Mater Trans A
1999;30:273544. DOI
49. Morishita M, Koyama K, Yagi S, Zhang G. Calculated phase diagram of the NiMoB ternary system. J Alloys Compd 2001;314:2128.
DOI
50. Mao P, Han K, Xin Y. Thermodynamic assessment of the MoRe binary system. J Alloys Compd 2008;464:1906. DOI
51. Mao P, Han K, Xin Y. Corrigendum to “thermodynamic assessment of the MoRe binary system”. J Alloys Compd 2009;482:5578. DOI
52. Yang Y, Zhang C, Chen S, Morgan D, Chang YA. Firstprinciples calculation aided thermodynamic modeling of the MoRe system.
Intermetallics 2010;18:57481. DOI
53. Mathieu R, Dupin N, Crivello J, et al. CALPHAD description of the MoRe system focused on the sigma phase modeling. . Calphad
2013;43:1831. DOI
54. Nash A, Nash P. NiRe (NickelRhenium) system. Bull Alloy Phase Diagrams 1985;6:34850. DOI
55. Boettinger WJ, Newbury DE, Ritchie NWM, et al. Solidification of NiRe peritectic alloys. Metall Mat Trans A 2019;50:77288. PubMed
PMC
56. Kresse G, Furthmüller J. Efficient iterative schemes for ab initio totalenergy calculations using a planewave basis set. Phys Rev B Condens
Matter 1996;54:1116986. DOI PubMed
57. Dreizler RM, Gross EKU. Density functional theory. Springer Berlin Heidelberg: Berlin, Heidelberg, 1990; Chapter 4, pp 4374. DOI
58. Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmentedwave method. Phys Rev B 1999;59:175875. DOI
59. Perdew JP, Wang Y. Accurate and simple analytic representation of the electrongas correlation energy. Phys Rev B Condens Matter
1992;45:132449. DOI PubMed
60. Monkhorst HJ, Pack JD. Special points for Brillouinzone integrations. Phys Rev B 1976;13:518892. DOI
61. Blöchl PE. Projector augmentedwave method. Phys Rev B Condens Matter 1994;50:1795379. DOI PubMed
62. Zunger A, Wei S, Ferreira LG, Bernard JE. Special quasirandom structures. Phys Rev Lett 1990;65:3536. DOI PubMed
63. van de Walle A, Tiwary P, de Jong M, et al. Efficient stochastic generation of special quasirandom structures. Calphad 2013;42:138. DOI
64. Shin D, Arróyave R, Liu Z, Van de Walle A. Thermodynamic properties of binary hcp solution phases from special quasirandom structures.