Page 683 - Read Online
P. 683

Abe et al. J Cancer Metastasis Treat 2020;6:51  I  http://dx.doi.org/10.20517/2394-4722.2020.117                           Page 15 of 15

                   Kremer R, editors. Human cell transformation. Cham: Springer International Publishing; 2019. pp. 225-33.
               103. Lye KL, Nordin N, Vidyadaran S, Thilakavathy K. Mesenchymal stem cells: from stem cells to sarcomas. Cell Biol Int 2016;40:610-8.
               104. Martínez-Delgado P, Lacerenza S, Obrador-Hevia A, et al. Cancer stem cells in soft-tissue sarcomas. Cells 2020;9:1449.
               105. Cortini M, Avnet S, Baldini N. Mesenchymal stroma: role in osteosarcoma progression. Cancer Lett 2017;405:90-9.
               106. Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer Sci
                   2017;108:1939-46.
               107. Babajani A, Soltani P, Jamshidi E, Farjoo MH, Niknejad H. Recent advances on drug-loaded mesenchymal stem cells with anti-neoplastic
                   agents for targeted treatment of cancer. Front Bioeng Biotechnol 2020;8:748.
               108. Zheng Y, Wang G, Chen R, Hua Y, Cai Z. Mesenchymal stem cells in the osteosarcoma microenvironment: their biological properties,
                   influence on tumor growth, and therapeutic implications. Stem Cell Res Ther 2018;9:22.
               109. Stamatopoulos A, Stamatopoulos T, Gamie Z, et al. Mesenchymal stromal cells for bone sarcoma treatment: roadmap to clinical practice.
                   J Bone Oncol 2019;16:100231.
               110.  Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the
                   orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev 2004;15:457-75.
               111.  Gambardella A, Nagaraju CK, O’Shea PJ, et al. Glycogen synthase kinase-3α/β inhibition promotes in vivo amplification of endogenous
                   mesenchymal progenitors with osteogenic and adipogenic potential and their differentiation to the osteogenic lineage. J Bone Miner Res
                   2011;26:811-21.
               112.  Cao H, Chu Y, Lv X, et al. GSK3 inhibitor-BIO regulates proliferation of immortalized pancreatic mesenchymal stem cells (iPMSCs).
                   PLoS One 2012;7:e31502.
               113.  Zhu Z, Yin J, Guan J, et al. Lithium stimulates human bone marrow derived mesenchymal stem cell proliferation through GSK-3β-
                   dependent β-catenin/Wnt pathway activation. FEBS J 2014;281:5371-89.
               114.  Tatullo M, Makeeva I, Rengo S, Rengo C, Spagnuolo G, Codispoti B. Small molecule GSK-3 antagonists play a pivotal role in reducing
                   the local inflammatory response, in promoting resident stem cell activation and in improving tissue repairing in regenerative dentistry.
                   Histol Histopathol 2019;34:1195-203.
               115.  Govarthanan K, Vidyasekar P, Gupta PK, Lenka N, Verma RS. Glycogen synthase kinase 3β inhibitor - CHIR 99021 augments the
                   differentiation potential of mesenchymal stem cells. Cytotherapy 2020;22:91-105.
               116.  Gregory CA, Green A, Lee N, Rao A, Gunn W. The promise of canonical Wnt signaling modulators in enhancing bone repair. Drug News
                   Perspect 2006;19:445-52.
               117.  Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol 2006;16:151-8.
               118.  Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest 2006;116:1202-9.
               119.  Bodine PV, Komm BS. Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord 2006;7:33-9.
               120. Ralston SH, de Crombrugghe B. Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev 2006;20:2492-506.
               121. Scholtysek C, Katzenbeisser J, Fu H, et al. PPARβ/δ governs Wnt signaling and bone turnover. Nat Med 2013;19:608-13.
               122. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013;19:179-92.
               123. Patel S, Doble BW, MacAulay K, Sinclair EM, Drucker DJ, Woodgett JR. Tissue-specific role of glycogen synthase kinase 3β in glucose
                   homeostasis and insulin action. Mol Cell Biol 2008;28:6314-28.
               124. Ragozzino E, Brancaccio M, Di Costanzo A, et al. 6-Bromoindirubin-3’-oxime intercepts GSK3 signaling to promote and enhance
                   skeletal muscle differentiation affecting miR-206 expression in mice. Sci Rep 2019;9:18091.
               125. Martins-Teixeira MB, Carvalho I. Antitumour anthracyclines: progress and perspectives. ChemMedChem 2020;15:933-48.
               126. Bhagat A, Kleinerman ES. Anthracycline-induced cardiotoxicity: causes, mechanisms, and prevention. In: Kleinerman ES, Gorlick R,
                   editors. Current advances in osteosarcoma. Cham: Springer International Publishing; 2020. pp. 181-92.
               127. Osataphan N, Phrommintikul A, Chattipakorn SC, Chattipakorn N. Effects of doxorubicin-induced cardiotoxicity on cardiac
                   mitochondrial dynamics and mitochondrial function: insights for future interventions. J Cell Mol Med 2020;24:6534-57.
               128. Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: what is the protective cognition that
                   phytochemicals provide us? Pharmacol Res 2020;160:105062.
               129. Miura T, Miki T. GSK-3β, a therapeutic target for cardiomyocyte protection. Circ J 2009;73:1184-92.
               130. Lal H, Ahmad F, Woodgett J, Force T. The GSK-3 family as therapeutic target for myocardial diseases. Circ Res 2015;116:138-49.
               131. Sharma AK, Bhatia S, Al-Harrasi A, Nandave M, Hagar H. Crosstalk between GSK-3β-actuated molecular cascades and myocardial
                   physiology. Heart Fail Rev 2020.
               132. Sharma AK, Thanikachalam PV, Bhatia S. The signaling interplay of GSK-3β in myocardial disorders. Drug Discov Today 2020;25:633-41.
               133. Wang W, Yang Y, Xiong Z, et al. Inhibition of glycogen synthase kinase 3beta ameliorates triptolide-induced acute cardiac injury by
                   desensitizing mitochondrial permeability transition. Toxicol Appl Pharmacol 2016;313:195-203.
               134. Ren D, Li F, Cao Q, Gao A, Ai Y, Zhang J. Yangxin granules alleviate doxorubicin-induced cardiotoxicity by suppressing oxidative stress
                   and apoptosis mediated by AKT/GSK3β/β-catenin signaling. J Int Med Res 2020;48:300060520945161.
               135. Lin J, Song T, Li C, Mao W. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer. Biochim Biophys
                   Acta Mol Cell Res 2020;1867:118659.
   678   679   680   681   682   683   684   685   686   687   688