Page 682 - Read Online
P. 682

Page 14 of 15                            Abe et al. J Cancer Metastasis Treat 2020;6:51  I  http://dx.doi.org/10.20517/2394-4722.2020.117

                   2015;5:124-34.
               69.  Stacchiotti S, Van Tine BA. Synovial sarcoma: current concepts and future perspectives. J Clin Oncol 2018;36:180-7.
               70.  Krieg AH, Hefti F, Speth BM, et al. Synovial sarcomas usually metastasize after > 5 years: a multicenter retrospective analysis with
                   minimum follow-up of 10 years for survivors. Ann Oncol 2011;22:458-67.
               71.  Wang S, Song R, Sun T, et al. Survival changes in patients with synovial sarcoma, 1983-2012. J Cancer 2017;8:1759-68.
               72.  Vlenterie M, Litière S, Rizzo E, et al. Outcome of chemotherapy in advanced synovial sarcoma patients: review of 15 clinical trials from
                   the european organisation for research and treatment of cancer soft tissue and bone sarcoma group; setting a new landmark for studies in
                   this entity. Eur J Cancer 2016;58:62-72.
               73.  Desar IME, Fleuren EDG, van der Graaf WTA. Systemic treatment for adults with synovial sarcoma. Curr Treat Options Oncol
                   2018;19:13.
               74.  Folpe AL. Fibrosarcoma: a review and update. Histopathology 2014;64:12-25.
               75.  Augsburger D, Nelson PJ, Kalinski T, et al. Current diagnostics and treatment of fibrosarcoma - perspectives for future therapeutic targets
                   and strategies. Oncotarget 2017;8:104638-53.
               76.  Davis DD, Kane SM. Fibrosarcoma. StatPearls [Internet] 2020.
               77.  Syed YY. Anlotinib: first global approval. Drugs 2018;78:1057-62.
               78.  Hoy SM. Tazemetostat: first approval. Drugs 2020;80:513-21.
               79.  Abe K, Yamamoto N, Domoto T, et al. Glycogen synthase kinase 3β as a potential therapeutic target in synovial sarcoma and
                   fibrosarcoma. Cancer Sci 2020;111:429-40.
               80.  Blay JY. Undifferentiated pleomorphic sarcoma. In Rare diseases, vol. 2018, Orphanet, London, UK, 2014.
               81.  Widemann BC, Italiano A. Biology and management of undifferentiated pleomorphic sarcoma, myxofibrosarcoma, and malignant
                   peripheral nerve sheath tumors: state of the art and perspectives. J Clin Oncol 2018;36:160-7.
               82.  Gronchi A, Ferrari S, Quagliuolo V, et al. Histotype-tailored neoadjuvant chemotherapy versus standard chemotherapy in patients with
                   high-risk soft-tissue sarcomas (ISG-STS 1001): an international, open-label, randomised, controlled, phase 3, multicentre trial. The
                   Lancet Oncology 2017;18:812-22.
               83.  Savina M, Le Cesne A, Blay J, et al. Patterns of care and outcomes of patients with METAstatic soft tissue SARComa in a real-life
                   setting: the METASARC observational study. BMC Med 2017;15:78.
               84.  Cancer Genome Atlas Research Network. Electronic address: elizabeth.demicco@sinaihealthsystem.ca., Cancer genome atlas research
                   network. Comprehensive and integrated genomic characterization of adult soft tissue sarcomas. Cell 2017;171:950-65.
               85.  Pérot G, Chibon F, Montero A, et al. Constant p53 pathway inactivation in a large series of soft tissue sarcomas with complex genetics.
                   Am J Pathol 2010;177:2080-90.
               86.  Wang CY, Wei Q, Han I, et al. Hedgehog and notch signaling regulate self-renewal of undifferentiated pleomorphic sarcomas. Cancer Res
                   2012;72:1013-22.
               87.  Matushansky I, Hernando E, Socci ND, et al. Derivation of sarcomas from mesenchymal stem cells via inactivation of the Wnt pathway.
                   J Clin Invest 2007;117:3248-57.
               88.  Marabelle A, Tselikas L, de Baere T, Houot R. Intratumoral immunotherapy: using the tumor as the remedy. Ann Oncol 2017;28:xii33-43.
               89.  Galluzzi L, Chan TA, Kroemer G, Wolchok JD, López-Soto A. The hallmarks of successful anticancer immunotherapy. Sci Transl Med
                   2018;10:eaat7807.
               90.  Thanindratarn P, Dean DC, Nelson SD, Hornicek FJ, Duan Z. Advances in immune checkpoint inhibitors for bone sarcoma therapy. J
                   Bone Oncol 2019;15:100221.
               91.  Heymann MF, Schiavone K, Heymann D. Bone sarcomas in the immunotherapy era. Br J Pharmacol 2020.
               92.  Ayodele O, Razak ARA. Immunotherapy in soft-tissue sarcoma. Curr Oncol 2020;27:17-23.
               93.  Parameswaran R, Ramakrishnan P, Moreton SA, et al. Repression of GSK3 restores NK cell cytotoxicity in AML patients. Nat Commun
                   2016;7:11154.
               94.  Cichocki F, Valamehr B, Bjordahl R, et al. GSK3 inhibition drives maturation of NK cells and enhances their antitumor activity. Cancer
                   Res 2017;77:5664-75.
               95.  Gattinoni L, Zhong XS, Palmer DC, et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem cells.
                   Nat Med 2009;15:808-13.
               96.  Zhang JY, Zhao YL, Lv YP, et al. Modulation of CD8  memory stem T cell activity and glycogen synthase kinase 3β inhibition enhances
                                                     +
                   anti-tumoral immunity in gastric cancer. Oncoimmunology 2018;7:e1412900.
               97.  Sengupta S, Katz SC, Sengupta S, Sampath P. Glycogen synthase kinase 3 inhibition lowers PD-1 expression, promotes long-term
                   survival and memory generation in antigen-specific CAR-T cells. Cancer Lett 2018;433:131-9.
               98.  Taylor A, Harker JA, Chanthong K, Stevenson PG, Zuniga EI, Rudd CE. Glycogen synthase kinase 3 inactivation drives T-bet-mediated
                   downregulation of co-receptor PD-1 to enhance CD8(+) cytolytic T cell responses. Immunity 2016;44:274-86.
               99.  Taylor A, Rothstein D, Rudd CE. Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in
                   cancer therapy. Cancer Res 2018;78:706-17.
                                                                                              +
               100. Taylor A, Rudd CE. Glycogen synthase kinase 3 inactivation compensates for the lack of CD28 in the priming of CD8  cytotoxic T-cells:
                   implications for anti-PD-1 immunotherapy. Front Immunol 2017;8:1653.
               101. Kamphorst AO, Wieland A, Nasti T, et al. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science
                   2017;355:1423-7.
               102. Taylor A, Rudd CE. Small molecule inhibition of glycogen synthase kinase-3 in cancer immunotherapy. In: Rhim JS, Dritschilo A,
   677   678   679   680   681   682   683   684   685   686   687