Page 321 - Read Online
P. 321

Page 8 of 9             Mokhamatam et al. J Cancer Metastasis Treat 2020;6:28  I  http://dx.doi.org/10.20517/2394-4722.2020.38

                   chemoresistance in pancreatic cancer. Nature 2015;527:525-30.
               37.  Sommers CL, Heckford SE, Skerker JM, Worland P, Torri JA, et al. Loss of epithelial markers and acquisition of vimentin expression in
                   adriamycin- and vinblastine-resistant human breast cancer cell lines. Cancer Res 1992;52:5190-7.
               38.  Huang J, Li H, Ren G. Epithelial-mesenchymal transition and drug resistance in breast cancer (Review). Int J Oncol 2015;47:840-8.
               39.  Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2002;2:48-58.
               40.  Munoz M, Henderson M, Haber M, Norris M. Role of the MRP1/ABCC1 multidrug transporter protein in cancer. IUBMB Life
                   2007;59:752-7.
               41.  Natarajan K, Xie Y, Baer MR, Ross DD. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem
                   Pharmacol 2012;83:1084-103.
               42.  Saxena M, Stephens MA, Pathak H, Rangarajan A. Transcription factors that mediate epithelial-mesenchymal transition lead to multidrug
                   resistance by upregulating ABC transporters. Cell Death Dis 2011;2:e179.
               43.  Witta SE, Gemmill RM, Hirsch FR, Coldren CD, Hedman K, et al. Restoring E-cadherin expression increases sensitivity to epidermal
                   growth factor receptor inhibitors in lung cancer cell lines. Cancer Res 2006;66:944-50.
               44.  Navas T, Kinders RJ, Lawrence SM, Ferry-Galow KV, Borgel S, et al. Clinical evolution of epithelial-mesenchymal transition in human
                   carcinomas. Cancer Res 2020;80:304-18.
               45.  Shuang ZY, Wu WC, Xu J, Lin G, Liu YC, et al. Transforming growth factor-β1-induced epithelial-mesenchymal transition generates
                   ALDH-positive cells with stem cell properties in cholangiocarcinoma. Cancer Lett 2014;354:320-8.
               46.  Barneh F, Mirzaie M, Nickchi P, Tan TZ, Thiery JP, et al. A rational drug combination design to inhibit epithelial-mesenchymal transition
                   in a three-dimensional microenvironment. bioRxiv 2017;148767.
               47.  Marcucci F, Stassi G, De Maria R. Epithelial-mesenchymal transition: a new target in anticancer drug discovery. Nat Rev Drug Discov
                   2016;15:311-25.
               48.  Chua KN, Sim WJ, Racine V, Lee SY, Goh BC, et al. A cell-based small molecule screening method for identifying inhibitors of
                   epithelial-mesenchymal transition in carcinoma. PLoS One 2012;7:e33183.
               49.  Huang RY, Wong MK, Tan TZ, Kuay KT, Ng AH, et al. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate
                   mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530). Cell Death Dis
                   2013;4:e915.
               50.  Zhang Y, Zhang W, Qin L. Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic
                   channel networks. Angew Chem Int Ed Engl 2014;53:2344-8.
               51.  Tang HM, Kuay KT, Koh PF, Asad M, Tan TZ, et al. An epithelial marker promoter induction screen identifies histone deacetylase
                   inhibitors to restore epithelial differentiation and abolishes anchorage independence growth in cancers. Cell Death Discov 2016;2:16041.
               52.  Polireddy K, Dong R, McDonald PR, Wang T, Luke B, et al. Targeting epithelial-mesenchymal transition for identification of inhibitors
                   for pancreatic cancer cell invasion and tumor spheres formation. PLoS One 2016;11:e0164811.
               53.  Nakanishi J, Sugiyama K, Matsuo H, Takahashi Y, Omura S, et al. An application of photoactivatable substrate for the evaluation of
                   epithelial-mesenchymal transition inhibitors. Anal Sci 2019;35:65-9.
               54.  Mizushima H, Wang X, Miyamoto S, Mekada E. Integrin signal masks growth-promotion activity of HB-EGF in monolayer cell cultures.
                   J Cell Sci 2009;122:4277-86.
               55.  Kumar M, Allison DF, Baranova NN, Wamsley JJ, Katz AJ, et al. NF-κB regulates mesenchymal transition for the induction of non-small
                   cell lung cancer initiating cells. PLoS One 2013;8:e68597.
               56.  Sutherland RM, McCredie JA, Inch WR. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer
                   Inst 1971;46:113-20.
               57.  Bjerkvig R, Tønnesen A, Laerum OD, Backlund EO. Multicellular tumor spheroids from human gliomas maintained in organ culture. J
                   Neurosurg 1990;72:463-75.
               58.  Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat
                   Med 1997;3:730-7.
               59.  Lee CH, Yu CC, Wang BY, Chang WW. Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs.
                   Oncotarget 2016;7:1215-26.
               60.  Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, et al. Epithelial-mesenchymal transition generates cells which have stem cell
                   properties. Cell 2009;133:704-15.
               61.  Yoshii Y, Waki A, Yoshida K, Kakezuka A, Kobayashi M, et al. The use of nanoimprinted scaffolds as 3D culture models to facilitate
                   spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials 2011;32:6052-8.
               62.  Arai K, Eguchi T, Rahman MM, Sakamoto R, Masuda N, et al. A novel high-throughput 3D screening system for EMT inhibitors: a pilot
                   screening discovered the EMT inhibitory activity of CDK2 inhibitor SU9516. PLoS One 2016;11:e0162394.
               63.  Aref AR, Huang RY, Yu W, Chua KN, Sun W, et al. Screening therapeutic EMT blocking agents in a three-dimensional microenvironment.
                   Integr Biol (Camb) 2013;5:381-9.
               64.  Melissaridou S, Wiechec E, Magan M, Jain MV, Chung MK, et al. The effect of 2D and 3D cell cultures on treatment response, EMT
                   profile and stem cell features in head and neck cancer. Cancer Cell Int 2019;19:16.
               65.  Weiswald LB, Bellet D, Dangles-Marie V. Spherical cancer models in tumor biology. Neoplasia 2015;17:1-15.
               66.  Zweigerdt R, Olmer R, Singh H, Haverich A, Martin U. Scalable expansion of human pluripotent stem cells in suspension culture. Nat
                   Protoc 2011;6:689-700.
               67.  Neal JT, Kuo CJ. Organoids as models for neoplastic transformation. Annu Rev Pathol 2016;11:199-220.
   316   317   318   319   320   321   322   323   324   325   326