Page 701 - Read Online
P. 701

Page 10 of 11                            Peiró et al. J Cancer Metastasis Treat 2019;5:49  I  http://dx.doi.org/10.20517/2394-4722.2018.109

                   and suppresses tumor growth. Cancer Res 2016;76:3744-55.
               4.   Wilkins SE, Abboud MI, Hancock RL, Schofield CJ. Targeting protein - protein interactions in the HIF system. Chem Med Chem
                   2016;11:773-86.
               5.   Smith TG, Robbins PA, Ratcliffe PJ. The human side of hypoxia-inducible factor. Br J of Haematology 2008;141:325-34.
               6.   Xiang L, Gilkes DM, Hu H, Luo W, Bullen JW, et al. HIF-1α and TAZ serve as reciprocal co-activators in human breast cancer cells.
                   Oncotarget 2015;6:11768-78.
               7.   Xiang L, Gilkes DM, Hu H, Takano N, Luo W, et al. Hypoxia-inducible factor 1 mediates TAZ expression and nuclear localization to
                   induce the breast cancer stem cell phenotype. Oncotarget 2014;5:12509-27.
               8.   Soni S, Padwad YS. HIF-1 in cancer therapy: two decade long story of a transcription factor. Acta Oncol 2017;56:503-15.
               9.   Lai F, Liu Q, Liu X, Ji M, Xie P, et al. LXY6090 - a novel manassantin A derivative - limits breast cancer growth through hypoxia-
                   inducible factor-1 inhibition. Onco Targets Ther 2016;9:3829-40.
               10.  Sarkar R, Mukherjee S, Biswas J, Roy M. Phenethyl isothiocyanate, by virtue of its antioxidant activity, inhibits invasiveness and
                   metastatic potential of breast cancer cells: HIF-1α as a putative target. Free Radic Res 2016;50:84-100.
               11.  Zhou Z, Liu F, Zhang ZS, Shu F, Zheng Y, et al. Human rhomboid family-1 (RHBDF1) suppresses oxygen-independent degradation of
                   hypoxia-inducible factor-1α in breast cancer. Cancer Res 2014;74:2719-30.
               12.  Huang Z, Wang R, Wei G, Jiang R, Zheng Y, et al. RAS protein activator-like 1 is functionally involved in hypoxia resistance in breast
                   cancer cells by targeting hypoxia inducible factor-1α. Oncol Lett 2017;14:3839-45.
               13.  Nalwoga H, Ahmed L, Arnes JB, Wabinga H, Akslen LA. Strong expression of hypoxia-inducible factor-1α (HIF-1α) is associated with
                   Axl expression and features of aggressive tumors in African breast cancer. PLoS One 2016;11:e0146823.
               14.  Cai FF, Xu C, Pan X, Cai L, Lin XY, et al. Prognostic value of plasma levels of HIF-1a and PGC-1a in breast cancer. Oncotarget
                   2016;7:77793-806.
               15.  Li M, Xiao D, Zhang J, Qu H, Yang Y et al. Expression of LPA2 is associated with poor prognosis in human breast cancer and regulates
                   HIF-1α expression and breast cancer cell growth. Oncol Rep 2016;6:3479-87.
               16.  Sun G, Wang Y, Hu W. Correlation between HIF-1α expression and breast cancer risk: a meta-analysis. Breast J 2014;20:213-15.
               17.  Tanaka T, Ikegami Y, Nakazawa H, Kuriyama N, Oki M, et al. Low-dose farnesyltransferase inhibitor suppresses HIF-1α and snail
                   expression in triple-negative breast cancer MDA-MB-231 cells in vitro. J. Cell. Physiol 2017;232:192-201.
               18.  Badowska-Kozakiewicz A, Sobol M, Patera J. Expression of Hypoxia-Inducible Factor 1α in Invasive Breast Cancer with Metastasis to
                   Lymph Nodes: Correlation with Steroid Receptors, HER2 and EPO-R. Adv Clin Exp Med 2016;25:741-50.
               19.  Villa JC, Chiu D, Brandes AH, Escorcia FE, Villa CH, et al. Non-transcriptional role of Hif-1α in activation of γ-secretase and Notch
                   signaling in breast cancer. Cell Rep 2014;8:1077-92.
               20.  Lopez-Haber C, Barrio-Real L, Casado-Medrano V, Kazanietz MG. Heregulin/ErbB3 signaling enhances CXCR4-driven rac1
                   activation and breast cancer cell motility via hypoxia-inducible factor 1α. Mol and Cellular Bio 2016;36:2011-26.
               21.  Huang R, Yu Y, Zong X, Li X, Ma L, et al. Monomethyltransferase SETD8 regulates breast cancer metabolism via stabilizing hypoxia-
                   inducible factor 1a. Cancer Lett 2017;390:1-10.
               22.  Changchun K, Pengchao H, Ke S, Ying W, Lei W. Interleukin-17 augments tumor necrosis factor α-mediated increase of hypoxia-
                   inducible factor-1α and inhibits vasodilator-stimulated phosphoprotein expression to reduce the adhesion of breast cancer cells. Oncol
                   Lett 2017;13:3253-60.
               23.  Dewangan J, Kaushik S, Rath SK, Balapure AK. Centchroman regulates breast cancer angiogenesis via inhibition of HIF-1α/VEGFR2
                   signalling axis. Life Sci 2018;193:9-19.
               24.  Filippi I, Carraro F, Naldini A. Interleukin-1β Affects MDAMB231 Breast Cancer Cell Migration under Hypoxia: Role of HIF-1α and
                   NFκB Transcription Factors. Mediators of Inflamm 2015;2105:789414.
               25.  Dong M, Fan XJ, Chen ZH, Wang TT, Li X, et al. Aberrant expression of enhancer of zeste homologue 2, correlated with HIF-1α, refines
                   relapse risk and predicts poor outcome for breast cancer. Oncol Rep 2014;32:1101-7.
               26.  Rajkovic-Molek K, Mustać E, Hadžisejdić I, Jonjić N. The prognostic importance of nuclear factor kB and hypoxia-inducible factor 1a
                   in relation to the breast cancer subtype and the overall survival. Appl Immunohistochem Mol Morphol 2014;22:464-70.
               27.  Yang J, AlTahan A, Jones DT, Buffa FM, Bridges E, et al. Estrogen receptor-α directly regulates the hypoxia-inducible factor 1 pathway
                   associated with antiestrogen response in breast cancer. PNAS 2015;112:15172-77.
               28.  Jia X, Hong Q, Lei L, Li D, Li J, et al. Basal and therapy-driven hypoxia-inducible factor-1α confers resistance to endocrine therapy in
                   estrogen receptor-positive breast cancer. Oncotarget 2015;6:8648-62.
               29.  Woo YM, Shin Y, Lee EJ, Lee S, Jeong SH, et al. Inhibition of aerobic glycolysis Represses Akt/mTOR/HIF-1α axis and restores
                   tamoxifen sensitivity in antiestrogen-resistant breast cancer cells. PLoS One 2015;10:e0132285.
               30.  Yehia L, Boulos F, Jabbour M, Mahfoud Z, Fakhruddin N, et al. Expression of HIF-1α and markers of angiogenesis are not significantly
                   different in triple negative breast cancer compared to other breast cancer molecular subtypes: implications for future therapy. PLoS One
                   2015;10:e0129356.
               31.  Kazi AA, Gilani RA, Schech AJ, Chumsri S, Sabnis G, et al. Nonhypoxic regulation and role of hypoxia-inducible factor 1 in aromatase
                   inhibitor resistant breast cancer. Breast Cancer Res 2014;16:R15.
               32.  Li YP, Tian FG, Shi PC, Guo LY, Wu HM, et al. 4-Hydroxynonenal promotes growth and angiogenesis of breast cancer cells through
                   HIF-1α stabilization. Asian Pac J Cancer Prev 2014;15:10151-56.
               33.  Aghazadeh S, Yazdanparast R. Activation of STAT3/HIF-1α/Hes-1 axis promotes Trastuzumab resistance in HER2-overexpressing
                   breast cancer cells via down-regulation of PTEN. Biochim Biophys Acta Gen Subj 2017;1861:1970-80.
   696   697   698   699   700   701   702   703   704   705   706