Page 488 - Read Online
P. 488

Bookland et al. J Cancer Metastasis Treat 2019;5:33  I  http://dx.doi.org/10.20517/2394-4722.2018.110                    Page 15 of 16

               42.  Costa FF, Bischof JM, Vanin EF, Lulla RR, Wang M, et al. Identification of microRNAs as potential prognostic markers in ependymoma.
                   PLoS One 2011;6:e25114.
               43.  Vidal DO, Marques MM, Lopes LF, Reis RM. The role of microRNAs in medulloblastoma. Pediatr Hematol Oncol 2013;30:367-78.
               44.  Akers JC, Ramakrishnan V, Kim R, Phillips S, Kaimal V, et al. miRNA contents of cerebrospinal fluid extracellular vesicles in
                   glioblastoma patients. J Neurooncol 2015;123:205-16.
               45.  Skog J, Würdinger T, van Rijn S, Meijer DH, Gainche L, et al. Glioblastoma microvesicles transport RNA and proteins that promote
                   tumour growth and provide diagnostic biomarkers. Nat Cell Biol 2008;10:1470-6.
               46.  Tűzesi Á, Kling T, Wenger A, Lunavat TR, Jang SC, et al. Pediatric brain tumor cells release exosomes with a miRNA repertoire that
                   differs from exosomes secreted by normal cells. Oncotarget 2017;8:90164-75.
               47.  Baraniskin A, Kuhnhenn J, Schlegel U, Maghnouj A, Zöllner H, et al. Identification of microRNAs in the cerebrospinal fluid as biomarker
                   for the diagnosis of glioma. Neuro Oncol 2012;14:29-33.
               48.  Shi R, Wang PY, Li XY, Chen JX, Li Y, et al. Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and
                   tumor recurrence of glioma patients. Oncotarget 2015;6:26971-81.
               49.  Drusco A, Bottoni A, Laganà A, Acunzo M, Fassan M, et al. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF)
                   can diagnose CNS malignancies. Oncotarget 2015;6:20829-39.
               50.  Xu X, Zhang F, Chen X, Ying Q. MicroRNA-518b functions as a tumor suppressor in glioblastoma by targeting PDGFRB. Mol Med Rep
                   2017;16:5326-32.
               51.  Blüml S, Margol AS, Sposto R, Kennedy RJ, Robison NJ, et al. Molecular subgroups of medulloblastoma identification using noninvasive
                   magnetic resonance spectroscopy. Neuro Oncol 2016;18:126-31.
               52.  Nakamizo S, Sasayama T, Shinohara M, Irino Y, Nishiumi S, et al. GC/MS-based metabolomic analysis of cerebrospinal fluid (CSF) from
                   glioma patients. J Neurooncol 2013;113:65-74.
               53.  Kalinina J, Ahn J, Devi NS, Wang L, Li Y, et al. Selective detection of the D-enantiomer of 2-Hydroxyglutarate in the CSF of glioma
                   patients with mutated isocitrate dehydrogenase. Clin Cancer Res 2016;22:6256-65.
               54.  Bostrom B, Mirkin BL. Elevation of cerebrospinal fluid catecholamine metabolites in patients with intracranial tumors of neuroectodermal
                   origin. J Clin Oncol 1987;5:1090-7.
               55.  Varela M, Alexiou GA, Liakopoulou M, Papakonstantinou E, Pitsouni D, et al. Monoamine metabolites in ventricular CSF of children
                   with posterior fossa tumors: correlation with tumor histology and cognitive functioning. J Neurosurg Pediatr 2014;13:375-9.
               56.  Del Valle L, Enam S, Lassak A, Wang JY, Croul S, et al. Insulin-like growth factor I receptor activity in human medulloblastomas. Clin
                   Cancer Res 2002;8:1822-30.
               57.  Zumkeller W, Westphal M. The IGF/IGFBP system in CNS malignancy. Mol Pathol 2001;54:227-9.
               58.  Gallagher EJ, LeRoith D. Is growth hormone resistance/IGF-1 reduction good for you? Cell Metab 2011;13:355-6.
               59.  de Bont JM, den Boer ML, Reddingius RE, Jansen J, Passier M, et al. Identification of apolipoprotein A-II in cerebrospinal fluid of
                   pediatric brain tumor patients by protein expression profiling. Clin Chem 2006;52:1501-9.
               60.  de Bont JM, Vanderstichele H, Reddingius RE, Pieters R, van Gool SW. Increased total-Tau levels in cerebrospinal fluid of pediatric
                   hydrocephalus and brain tumor patients. Eur J Paediatr Neurol 2008;12:334-41.
               61.  de Bont JM, van Doorn J, Reddingius RE, Graat GH, Passier MM, et al. Various components of the insulin-like growth factor system
                   in tumor tissue, cerebrospinal fluid and peripheral blood of pediatric medulloblastoma and ependymoma patients. Int J Cancer
                   2008;123:594-600.
               62.  Desiderio C, D'Angelo L, Rossetti DV, Iavarone F, Giardina B, et al. Cerebrospinal fluid top-down proteomics evidenced the potential
                   biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors. Proteomics 2012;12:2158-66.
               63.  Saratsis AM, Yadavilli S, Magge S, Rood BR, Perez J, et al. Insights into pediatric diffuse intrinsic pontine glioma through proteomic
                   analysis of cerebrospinal fluid. Neuro Oncol 2012;14:547-60.
               64.  Rajagopal MU, Hathout Y, MacDonald TJ, Kieran MW, Gururangan S, et al. Proteomic profiling of cerebrospinal fluid identifies
                   prostaglandin D2 synthase as a putative biomarker for pediatric medulloblastoma: a pediatric brain tumor consortium study. Proteomics
                   2011;11:935-43.
               65.  Wilne S, Collier J, Kennedy C, Koller K, Grundy R, et al. Presentation of childhood CNS tumours: a systematic review and meta-
                   analysis. Lancet Oncol 2007;8:685-95.
               66.  Kumar A, Agrawal M, Prakash S, Somorendra S, Singh PK, et al. Acute foramen magnum syndrome following single diagnostic lumbar
                   puncture: consequence of a small posterior fossa? World Neurosurg 2016;91:677.e1-7.
               67.  Nonaka T, Wong DTW. Liquid biopsy in head and neck cancer: promises and challenges. J Dent Res 2018;97:701-8.
               68.  Hsiao YC, Chu LJ, Chen YT, Chi LM, Chien KY, et al. Variability assessment of 90 salivary proteins in intraday and interday samples
                   from healthy donors by multiple reaction monitoring-mass spectrometry. Proteomics Clin Appl 2018;12.
               69.  Nolen BM, Orlichenko LS, Marrangoni A, Velikokhatnaya L, Prosser D, et al. An extensive targeted proteomic analysis of disease-related
                   protein biomarkers in urine from healthy donors. PLoS One 2013;8:e63368.
               70.  Duffy MJ. Evidence for the clinical use of tumour markers. Ann Clin Biochem 2004;41:370-7.
               71.  Shalaby T, Fiaschetti G, Baumgartner M, Grotzer MA. Significance and therapeutic value of miRNAs in embryonal neural tumors.
                   Molecules 2014;19:5821-62.
               72.  Hao TB, Shi W, Shen XJ, Qi J, Wu XH, et al. Circulating cell-free DNA in serum as a biomarker for diagnosis and prognostic prediction
                   of colorectal cancer. Br J Cancer 2014;111:1482-9.
               73.  Zhou Q, Liu J, Quan J, Liu W, Tan H, et al. MicroRNAs as potential biomarkers for the diagnosis of glioma: a systematic review and
                   meta-analysis. Cancer Sci 2018;109:2651-9.
               74.  Ivo D'Urso P, Fernando D'Urso O, Damiano Gianfreda C, Mezzolla V, Storelli C, et al. miR-15b and miR-21 as circulating biomarkers for
                   diagnosis of glioma. Curr Genomics 2015;16:304-11.
   483   484   485   486   487   488   489   490   491   492   493