Page 372 - Read Online
P. 372

Rizzieri et al. J Cancer Metastasis Treat 2019;5:26  I  http://dx.doi.org/10.20517/2394-4722.2019.05                        Page 15 of 16

                   degradation. Oncotarget 2017;8:85858-67.
               73.  Bolzoni M, Chiu M, Accardi F, Vescovini R, Airoldi I, et al. Dependence on glutamine uptake and glutamine addiction characterize
                   myeloma cells: a new attractive target. Blood 2016;128:667-79.
               74.  Isoda A, Kaira K, Iwashina M, Oriuchi N, Tominaga H, et al. Expression of L-type amino acid transporter 1 (LAT1) as a prognostic and
                   therapeutic indicator in multiple myeloma. Cancer Sci 2014;105:1496-502.
               75.  Jurczyszyn A, Czepiel J, Gdula-Argasinska J, Czapkiewicz A, Biesiada G, et al. Erythrocyte membrane fatty acids in multiple myeloma
                   patients. Leuk Res 2014;38:1260-5.
               76.  Jurczyszyn A, Czepiel J, Gdula-Argasinska J, Pasko P, Czapkiewicz A, et al. Plasma fatty acid profile in multiple myeloma patients. Leuk
                   Res 2015;39:400-5.
               77.  Berge K, Tronstad KJ, Bohov P, Madsen L, Berge RK. Impact of mitochondrial beta-oxidation in fatty acid-mediated inhibition of glioma
                   cell proliferation. J Lipid Res 2003;44:118-27.
               78.  Samudio I, Harmancey R, Fiegl M, Kantarjian H, Konopleva M, et al. Pharmacologic inhibition of fatty acid oxidation sensitizes human
                   leukemia cells to apoptosis induction. The J Clin Invest 2010;120:142-56.
               79.  Tirado-Vélez JM, Joumady I, Sáez-Benito A, Cózar-Castellano I, Perdomo G. Inhibition of fatty acid metabolism reduces human myeloma
                   cells proliferation. PLoS One 2012;7:e46484.
               80.  O’Connor RS, Guo L, Ghassemi S, Snyder NW, Worth AJ, et al. The CPT1a inhibitor, etomoxir induces severe oxidative stress at
                   commonly used concentrations. Sci Rep 2018;8:6289.
               81.  Bullwinkle EM, Parker MD, Bonan NF, Falkenberg LG, Davison SP, et al. Adipocytes contribute to the growth and progression of multiple
                   myeloma: unraveling obesity related differences in adipocyte signaling. Cancer Lett 2016;380:114-21.
               82.  Dimopoulos MA, Barlogie B, Smith TL, Alexanian R. HIgh serum lactate dehydrogenase level as a marker for drug resistance and short
                   survival in multiple myeloma. Ann Intern Med 1991;115:931-5.
               83.  Moreau P, Cavo M, Sonneveld P, Rosinol L, Attal M, et al. Combination of international scoring system 3, high lactate dehydrogenase, and
                   t(4;14) and/or del(17p) identifies patients with multiple myeloma (MM) treated with front-line autologous stem-cell transplantation at high
                   risk of early mm progression-related death. J Clin Oncol 2014;32:2173-80.
               84.  Marin-Hernandez A, Gallardo-Perez JC, Ralph SJ, Rodriguez-Enriquez S, Moreno-Sanchez R. HIF-1alpha modulates energy metabolism in
                   cancer cells by inducing over-expression of specific glycolytic isoforms. Mini Rev Med Chem 2009;9:1084-101.
               85.  Brown CO, Salem K, Wagner BA, Bera S, Singh N, et al. Interleukin-6 counteracts therapy-induced cellular oxidative stress in multiple
                   myeloma by up-regulating manganese superoxide dismutase. Biochem J 2012;444:515-27.
               86.  Azab AK, Hu J, Quang P, Azab F, Pitsillides C, et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial
                   to mesenchymal transition-like features. Blood 2012;119:5782-94.
               87.  Ye LY, Chen W, Bai XL, Xu XY, Zhang Q, et al. Hypoxia-induced epithelial-to-mesenchymal transition in hepatocellular carcinoma induces
                   an immunosuppressive tumor microenvironment to promote metastasis. Cancer Res 2016;76:818-30.
               88.  Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S. Angiogenesis and multiple myeloma. Cancer Microenviron 2011;4:325-37.
               89.  Otjacques E, Binsfeld M, Noel A, Beguin Y, Cataldo D, et al. Biological aspects of angiogenesis in multiple myeloma. Int J Hematol
                   2011;94:505-18.
               90.  Fujiwara S, Wada N, Kawano Y, Okuno Y, Kikukawa Y, et al. Lactate, a putative survival factor for myeloma cells, is incorporated by
                   myeloma cells through monocarboxylate transporters 1. Exp Hematol Oncol 2015;4:12.
               91.  Walters DK, Arendt BK, Jelinek DF. CD147 regulates the expression of MCT1 and lactate export in multiple myeloma cells. Cell Cycle
                   2013;12:3175-83.
               92.  Huber V, Camisaschi C, Berzi A, Ferro S, Lugini L, et al. Cancer acidity: an ultimate frontier of tumor immune escape and a novel target of
                   immunomodulation. Seminars in cancer biology. Elsevier; 2017. pp. 74-89.
               93.  Molina JR, Sun Y, Protopopova M, Gera S, Bandi M, et al. An inhibitor of oxidative phosphorylation exploits cancer vulnerability. Nat Med
                   2018; doi: 10.1038/s41591-018-0052-4.
               94.  Yang H, Tabe Y, Sekihara K, Saito K, Ma H, et al. Novel oxidative phosphorylation inhibitor IACS-010759 induces AMPK-dependent
                   apoptosis of AML cells. Blood 2017;130:1245.
               95.  Arihara Y, Takada K, Kamihara Y, Hayasaka N, Nakamura H, et al. Small molecule CP-31398 induces reactive oxygen species-dependent
                   apoptosis in human multiple myeloma. Oncotarget 2017;8:65889-99.
               96.  Johnson WD, Muzzio M, Detrisac CJ, Kapetanovic IM, Kopelovich L, et al. Subchronic oral toxicity and metabolite profiling of the p53
                   stabilizing agent, CP-31398, in rats and dogs. Toxicology 2011;289:141-50.
               97.  Kühnel A, Blau O, Nogai KA, Blau IW. The Warburg effect in multiple myeloma and its microenvironment. Arch Med Res 2017;5.
               98.  Biondo PD, Brindley DN, Sawyer MB, Field CJ. The potential for treatment with dietary long-chain polyunsaturated n-3 fatty acids during
                   chemotherapy. J Nutr Biochem 2008;19:787-96.
               99.  Hajjaji N, Bougnoux P. Selective sensitization of tumors to chemotherapy by marine-derived lipids: a review. Cancer Treat Rev
                   2013;39:473-88.
               100.  de Aguiar Pastore Silva J, Emilia de Souza Fabre M, Waitzberg DL. Omega-3 supplements for patients in chemotherapy and/or
                   radiotherapy: a systematic review. Clin Nutr 2015;34:359-66.
               101.  Merendino N, Costantini L, Manzi L, Molinari R, D'Eliseo D, et al. Dietary omega -3 polyunsaturated fatty acid DHA: a potential adjuvant
                   in the treatment of cancer. Biomed Res Int 2013;2013:310186.
               102.  Siddiqui RA, Harvey KA, Xu Z, Bammerlin EM, Walker C, et al. Docosahexaenoic acid: a natural powerful adjuvant that improves efficacy
                   for anticancer treatment with no adverse effects. Biofactors 2011;37:399-412.
               103.  Wang J, Luo T, Li S, Zhao J. The powerful applications of polyunsaturated fatty acids in improving the therapeutic efficacy of anticancer
                   drugs. Expert Opin Drug Deliv 2012;9:1-7.
               104.  Abdi J, Garssen J, Faber J, Redegeld F. Omega-3 fatty acids, EPA and DHA induce apoptosis and enhance drug sensitivity in multiple
   367   368   369   370   371   372   373   374   375   376   377