Page 371 - Read Online
P. 371

Page 14 of 16                         Rizzieri et al. J Cancer Metastasis Treat 2019;5:26  I  http://dx.doi.org/10.20517/2394-4722.2019.05

                   contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One 2015;10:e0119857.
               40.  Soriano GP, Besse L, Li N, Kraus M, Besse A, et al. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome
                   activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia 2016;30:2198-207.
               41.  Zaal EA, Wu W, Jansen G, Zweegman S, Cloos J, et al. Bortezomib resistance in multiple myeloma is associated with increased serine
                   synthesis. Cancer Metab 2017;5:7.
               42.  Maiso P, Huynh D, Moschetta M, Sacco A, Aljawai Y, et al. Metabolic signature identifies novel targets for drug resistance in multiple
                   myeloma. Cancer Res 2015;75:2071-82.
               43.  McDonald JE, Kessler MM, Gardner MW, Buros AF, Ntambi JA, et al. Assessment of total lesion glycolysis by (18)F FDG PET/CT
                   significantly improves prognostic value of GEP and ISS in Myeloma. Clin Cancer Res 2017;23:1981-7.
               44.  Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin
                   Oncol 2013;10:143-53.
               45.  Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov
                   2005;4:988-1004.
               46.  Parsons R. Human cancer, PTEN and the PI-3 kinase pathway. Semin Cell Dev Biol 2004;15:171-6.
               47.  Lee JY, Engelman JA, Cantley LC. Biochemistry. PI3K charges ahead. Science 2007;317:206-7.
               48.  Colla S, Storti P, Donofrio G, Todoerti K, Bolzoni M, et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1α
                   overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138+ cells.
                   Leukemia 2010;24:1967.
               49.  Gastelum G, Kraut J, Poteshkina A, Artiga E, Weckstein G, et al. Targeting of the hypoxia-induced acid microenvironment of multiple
                   myeloma cells increases hypoxia-mediated apoptosis. Blood 2017;130:4376.
               50.  Theodoropoulos VE, Lazaris A, Sofras F, Gerzelis I, Tsoukala V, et al. Hypoxia-inducible factor 1 alpha expression correlates with
                   angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol 2004;46:200-8.
               51.  Isobe T, Aoyagi K, Koufuji K, Shirouzu K, Kawahara A, et al. Clinicopathological significance of hypoxia-inducible factor-1 alpha (HIF-
                   1alpha) expression in gastric cancer. Int J Clin Oncol 2013;18:293-304.
               52.  Baba Y, Nosho K, Shima K, Irahara N, Chan AT, et al. HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal
                   cancers. Am J Pathol 2010;176:2292-301.
               53.  Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Turley H, et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis,
                   and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 2002;53:1192-202.
               54.  Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, et al. The M2 splice isoform of pyruvate kinase is important
                   for cancer metabolism and tumour growth. Nature 2008;452:230.
               55.  Gu Z, Xia J, Xu H, Frech I, Tricot G, et al. NEK2 Promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate
                   kinase. J Hematol Oncol 2017;10:17.
               56.  Berg J, Tymoczko J, Stryer L. Gluconeogenesis and glycolysis are reciprocally regulated. WH Freeman, New York: Biochemistry; 2002.
               57.  Zhang H, Li L, Chen Q, Li M, Feng J, et al. PGC1beta regulates multiple myeloma tumor growth through LDHA-mediated glycolytic
                   metabolism. Mol Oncol 2018;12:1579-95.
               58.  McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, et al. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and
                   GLUT11: implications for glucose transporter-directed therapy. Blood 2012;119:4686-97.
               59.  Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KUA, Kandela I, et al. Targeting the metabolic plasticity of multiple myeloma with FDA-
                   approved ritonavir and metformin. Clin Cancer Res 2015;21:1161-71.
               60.  Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the “Warburg Effect” and a pivotal target
                   for effective therapy. Seminars in cancer biology. Elsevier; 2009. pp. 17-24.
               61.  Liu Y, Wu K, Shi L, Xiang F, Tao K, et al. Prognostic significance of the metabolic marker hexokinase-2 in various solid tumors: a meta-
                   analysis. PLoS One 2016;11:e0166230.
               62.  Nakano A, Miki H, Nakamura S, Harada T, Oda A, et al. Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with
                   3-bromopyruvate. J Bioenerg Biomembr 2012;44:31-8.
               63.  El Arfani C, De Veirman K, Maes K, De Bruyne E, Menu E. Metabolic features of multiple myeloma. Int J Mol Sci 2018;19:E1200.
               64.  Lis P, Dylag M, Niedzwiecka K, Ko YH, Pedersen PL, et al. The HK2 dependent "Warburg Effect" and mitochondrial oxidative
                   phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. Molecules 2016;21:E1730.
               65.  Hirschey MD, DeBerardinis RJ, Diehl AME, Drew JE, Frezza C, et al. Dysregulated metabolism contributes to oncogenesis. Semin Cancer
                   Biol 2015;35 Suppl:S129-50.
               66.  Demel HR, Feuerecker B, Piontek G, Seidl C, Blechert B, et al. Effects of topoisomerase inhibitors that induce DNA damage response on
                   glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am J Cancer Res 2015;5:1649-64.
               67.  Shanmugam M, McBrayer SK, Qian J, Raikoff K, Avram MJ, et al. Targeting glucose consumption and autophagy in myeloma with the
                   novel nucleoside analogue 8-aminoadenosine. J Biol Chem 2009;284:26816-30.
               68.  Bajpai R, Matulis SM, Wei C, Nooka AK, Von Hollen HE, et al. Targeting glutamine metabolism in multiple myeloma enhances BIM
                   binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene 2016;35:3955-64.
               69.  Beckermann KE, Dudzinski SO, Rathmell JC. Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor
                   Rev 2017;35:7-14.
               70.  Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast
                   cancer prognosis. J Clin Invest 2014;124:398-412.
               71.  Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent
                   apoptosis in human cells. J Cell Biol 2007;178:93-105.
               72.  Effenberger M, Bommert KS, Kunz V, Kruk J, Leich E, et al. Glutaminase inhibition in multiple myeloma induces apoptosis via MYC
   366   367   368   369   370   371   372   373   374   375   376