Page 371 - Read Online
P. 371
Page 14 of 16 Rizzieri et al. J Cancer Metastasis Treat 2019;5:26 I http://dx.doi.org/10.20517/2394-4722.2019.05
contribute to acquired melphalan resistance in multiple myeloma cells. PLoS One 2015;10:e0119857.
40. Soriano GP, Besse L, Li N, Kraus M, Besse A, et al. Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome
activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia 2016;30:2198-207.
41. Zaal EA, Wu W, Jansen G, Zweegman S, Cloos J, et al. Bortezomib resistance in multiple myeloma is associated with increased serine
synthesis. Cancer Metab 2017;5:7.
42. Maiso P, Huynh D, Moschetta M, Sacco A, Aljawai Y, et al. Metabolic signature identifies novel targets for drug resistance in multiple
myeloma. Cancer Res 2015;75:2071-82.
43. McDonald JE, Kessler MM, Gardner MW, Buros AF, Ntambi JA, et al. Assessment of total lesion glycolysis by (18)F FDG PET/CT
significantly improves prognostic value of GEP and ISS in Myeloma. Clin Cancer Res 2017;23:1981-7.
44. Rodon J, Dienstmann R, Serra V, Tabernero J. Development of PI3K inhibitors: lessons learned from early clinical trials. Nat Rev Clin
Oncol 2013;10:143-53.
45. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov
2005;4:988-1004.
46. Parsons R. Human cancer, PTEN and the PI-3 kinase pathway. Semin Cell Dev Biol 2004;15:171-6.
47. Lee JY, Engelman JA, Cantley LC. Biochemistry. PI3K charges ahead. Science 2007;317:206-7.
48. Colla S, Storti P, Donofrio G, Todoerti K, Bolzoni M, et al. Low bone marrow oxygen tension and hypoxia-inducible factor-1α
overexpression characterize patients with multiple myeloma: role on the transcriptional and proangiogenic profiles of CD138+ cells.
Leukemia 2010;24:1967.
49. Gastelum G, Kraut J, Poteshkina A, Artiga E, Weckstein G, et al. Targeting of the hypoxia-induced acid microenvironment of multiple
myeloma cells increases hypoxia-mediated apoptosis. Blood 2017;130:4376.
50. Theodoropoulos VE, Lazaris A, Sofras F, Gerzelis I, Tsoukala V, et al. Hypoxia-inducible factor 1 alpha expression correlates with
angiogenesis and unfavorable prognosis in bladder cancer. Eur Urol 2004;46:200-8.
51. Isobe T, Aoyagi K, Koufuji K, Shirouzu K, Kawahara A, et al. Clinicopathological significance of hypoxia-inducible factor-1 alpha (HIF-
1alpha) expression in gastric cancer. Int J Clin Oncol 2013;18:293-304.
52. Baba Y, Nosho K, Shima K, Irahara N, Chan AT, et al. HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal
cancers. Am J Pathol 2010;176:2292-301.
53. Koukourakis MI, Giatromanolaki A, Sivridis E, Simopoulos C, Turley H, et al. Hypoxia-inducible factor (HIF1A and HIF2A), angiogenesis,
and chemoradiotherapy outcome of squamous cell head-and-neck cancer. Int J Radiat Oncol Biol Phys 2002;53:1192-202.
54. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, et al. The M2 splice isoform of pyruvate kinase is important
for cancer metabolism and tumour growth. Nature 2008;452:230.
55. Gu Z, Xia J, Xu H, Frech I, Tricot G, et al. NEK2 Promotes aerobic glycolysis in multiple myeloma through regulating splicing of pyruvate
kinase. J Hematol Oncol 2017;10:17.
56. Berg J, Tymoczko J, Stryer L. Gluconeogenesis and glycolysis are reciprocally regulated. WH Freeman, New York: Biochemistry; 2002.
57. Zhang H, Li L, Chen Q, Li M, Feng J, et al. PGC1beta regulates multiple myeloma tumor growth through LDHA-mediated glycolytic
metabolism. Mol Oncol 2018;12:1579-95.
58. McBrayer SK, Cheng JC, Singhal S, Krett NL, Rosen ST, et al. Multiple myeloma exhibits novel dependence on GLUT4, GLUT8, and
GLUT11: implications for glucose transporter-directed therapy. Blood 2012;119:4686-97.
59. Dalva-Aydemir S, Bajpai R, Martinez M, Adekola KUA, Kandela I, et al. Targeting the metabolic plasticity of multiple myeloma with FDA-
approved ritonavir and metformin. Clin Cancer Res 2015;21:1161-71.
60. Mathupala SP, Ko YH, Pedersen PL. Hexokinase-2 bound to mitochondria: cancer's stygian link to the “Warburg Effect” and a pivotal target
for effective therapy. Seminars in cancer biology. Elsevier; 2009. pp. 17-24.
61. Liu Y, Wu K, Shi L, Xiang F, Tao K, et al. Prognostic significance of the metabolic marker hexokinase-2 in various solid tumors: a meta-
analysis. PLoS One 2016;11:e0166230.
62. Nakano A, Miki H, Nakamura S, Harada T, Oda A, et al. Up-regulation of hexokinaseII in myeloma cells: targeting myeloma cells with
3-bromopyruvate. J Bioenerg Biomembr 2012;44:31-8.
63. El Arfani C, De Veirman K, Maes K, De Bruyne E, Menu E. Metabolic features of multiple myeloma. Int J Mol Sci 2018;19:E1200.
64. Lis P, Dylag M, Niedzwiecka K, Ko YH, Pedersen PL, et al. The HK2 dependent "Warburg Effect" and mitochondrial oxidative
phosphorylation in cancer: targets for effective therapy with 3-bromopyruvate. Molecules 2016;21:E1730.
65. Hirschey MD, DeBerardinis RJ, Diehl AME, Drew JE, Frezza C, et al. Dysregulated metabolism contributes to oncogenesis. Semin Cancer
Biol 2015;35 Suppl:S129-50.
66. Demel HR, Feuerecker B, Piontek G, Seidl C, Blechert B, et al. Effects of topoisomerase inhibitors that induce DNA damage response on
glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am J Cancer Res 2015;5:1649-64.
67. Shanmugam M, McBrayer SK, Qian J, Raikoff K, Avram MJ, et al. Targeting glucose consumption and autophagy in myeloma with the
novel nucleoside analogue 8-aminoadenosine. J Biol Chem 2009;284:26816-30.
68. Bajpai R, Matulis SM, Wei C, Nooka AK, Von Hollen HE, et al. Targeting glutamine metabolism in multiple myeloma enhances BIM
binding to BCL-2 eliciting synthetic lethality to venetoclax. Oncogene 2016;35:3955-64.
69. Beckermann KE, Dudzinski SO, Rathmell JC. Dysfunctional T cell metabolism in the tumor microenvironment. Cytokine Growth Factor
Rev 2017;35:7-14.
70. Terunuma A, Putluri N, Mishra P, Mathe EA, Dorsey TH, et al. MYC-driven accumulation of 2-hydroxyglutarate is associated with breast
cancer prognosis. J Clin Invest 2014;124:398-412.
71. Yuneva M, Zamboni N, Oefner P, Sachidanandam R, Lazebnik Y. Deficiency in glutamine but not glucose induces MYC-dependent
apoptosis in human cells. J Cell Biol 2007;178:93-105.
72. Effenberger M, Bommert KS, Kunz V, Kruk J, Leich E, et al. Glutaminase inhibition in multiple myeloma induces apoptosis via MYC