Page 285 - Read Online
P. 285

Page 6 of 7                               Meng et al. J Cancer Metastasis Treat 2019;5:21  I  http://dx.doi.org/10.20517/2394-4722.2018.96

               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2019.


               REFERENCES
               1.   Mansoori B, Mohammadi A, Ghasabi M, Shirjang S, Dehghan R, et al. miR-142-3p as tumor suppressor miRNA in the regulation of
                   tumorigenicity, invasion and migration of human breast cancer by targeting Bach-1 expression. J Cell Physiol 2019;234:9816-25.
               2.   da Costa AM, Hashim D, Fregnani JHTG, Weiderpass E. Overall survival and time trends in breast and cervical cancer incidence and
                   mortality in the Regional Health District (RHD) of Barretos, São Paulo, Brazil. BMC Cancer 2018;18:1079.
               3.   Scully OJ, Bay BH, Yip G, Yu Y. Breast cancer metastasis. Cancer Genomics Proteomics 2012;9:311-20.
               4.   Saharat K, Lirdprapamongkol K, Chokchaichamnankit D, Srisomsap C, Svasti J, et al. Tumor susceptibility gene 101 mediates anoikis
                   resistance of metastatic thyroid cancer cells. Cancer Genomics Proteomics 2018;15:473-83.
               5.   Bush SJ, Chen L, Tovar-Corona JM, Urrutia AO. Alternative splicing and the evolution of phenotypic novelty. Philos Trans R Soc Lond B
                   Biol Sci 2017;372:20150474.
               6.   Cieply B, Carstens RP. Functional roles of alternative splicing factors in human disease. Wiley Interdiscip Rev RNA 2015;6:311-26.
               7.   Orengo JP, Cooper TA. Alternative splicing in disease. Adv Exp Med Biol 2007;623:212-23.
               8.   Maguire SL, Leonidou A, Wai P, Marchiò C, Ng CK, et al. SF3B1 mutations constitute a novel therapeutic target in breast cancer. J Pathol
                   2015;235:571-80.
               9.   Martínez-Montiel N, Anaya-Ruiz M, Pérez-Santos M, Martínez-Contreras RD. Alternative splicing in breast cancer and the potential
                   development of therapeutic tools. Genes (Basel) 2017;8:217.
               10.  Shapiro IM, Cheng AW, Flytzanis NC, Balsamo M, Condeelis JS, et al. An EMT-driven alternative splicing program occurs in human breast
                   cancer and modulates cellular phenotype. PLoS Genet 2011;7:e1002218.
               11.  Xu Y, Gao XD, Lee JH, Huang H, Tan H, et al. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating
                   alternative splicing. Genes Dev 2014;28:1191-203.
               12.  Dorman SN, Viner C, Rogan PK. Splicing mutation analysis reveals previously unrecognized pathways in lymph node-invasive breast
                   cancer. Sci Rep 2014;4:7063.
               13.  Silipo M, Gautrey H, Tyson-Capper A. Deregulation of splicing factors and breast cancer development. J Mol Cell Biol 2015;7:388-401.
               14.  Inoue K, Fry EA. Aberrant splicing of estrogen receptor, HER2, and CD44 genes in breast cancer. Genet Epigenet 2015;7:19-32.
               15.  Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, et al. Comprehensive analysis of alternative splicing across tumors from 8,705
                   patients. Cancer Cell 2018;34:211-24.
               16.  Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT
                   subunit of system xc(-) and thereby promotes tumor growth. Cancer Cell 2011;19:387-400.
               17.  Prochazka L, Tesarik R, Turanek J. Regulation of alternative splicing of CD44 in cancer. Cell Signal 2014;26:2234-9.
               18.  Xu Y, Gao XD, Lee JH, Huang H, Tan H, et al. Cell type-restricted activity of hnRNPM promotes breast cancer metastasis via regulating
                   alternative splicing. Genes Dev 2014;11:1191-203.
               19.  Harvey SE, Xu Y, Lin X, Gao XD, Qiu Y, et al. Coregulation of alternative splicing by hnRNPM and ESRP1 during EMT. RNA
                   2018;24:1326-38.
               20.  Sun H, Liu T, Zhu D, Dong X, Liu F, et al. HnRNPM and CD44s expression affects tumor aggressiveness and predicts poor prognosis in
                   breast cancer with axillary lymph node metastases. Genes Chromosomes Cancer 2017;56:598-607.
               21.  Zhang FL, Cao JL, Xie HY, Sun R, Yang LF, et al. Cancer-associated MORC2-mutant M276I regulates an hnRNPM-mediated CD44
                   splicing switch to promote invasion and metastasis in triple-negative breast cancer. Cancer Res 2018;20:5780-92.
               22.  Ke H, Zhao L, Zhang H, Feng X, Xu H, et al. Loss of TDP43 inhibits progression of triple-negative breast cancer in coordination with
                   SRSF3. Proc Natl Acad Sci U S A 2018;115: E3426-35.
               23.  DeLigio JT, Lin G, Chalfant CE, Park MA. Splice variants of cytosolic polyadenylation element-binding protein 2 (CPEB2) differentially
                   regulate pathways linked to cancer metastasis. J Biol Chem 2017;292:17909-18.
               24.  Fici P, Gallerani G, Morel AP, Mercatali L, Ibrahim T, et al. Splicing factor ratio as an index of epithelial-mesenchymal transition and tumor
                   aggressiveness in breast cancer. Oncotarget 2017;8:2423-36.
               25.  Vanharanta S, Marney CB, Shu W, Valiente M, Zou Y, et al. Loss of the multifunctional RNA-binding protein RBM47 as a source of
                   selectable metastatic traits in breast cancer. Elife 2014;3:1-24.
               26.  Lee NS, Evgrafov OV, Souaiaia T, Bonyad A, Herstein J, et al. Non-coding RNAs derived from an alternatively spliced REST transcript
                   (REST-003) regulate breast cancer invasiveness. Sci Rep 2015;5:11207.
               27.  Brown DM, Ruoslahti E. Metadherin, a cell surface protein in breast tumors that mediates lung metastasis. Cancer Cell 2004;5:365-74.
               28.  Hu G, Chong RA, Yang Q, Wei Y, Blanco MA, et al. MTDH activation by 8q22 genomic gain promotes chemoresistance and metastasis of
   280   281   282   283   284   285   286   287   288   289   290