Page 279 - Read Online
P. 279

Page 14 of 14                           Ansari et al. J Cancer Metastasis Treat 2019;5:20  I  http://dx.doi.org/10.20517/2394-4722.2018.68

                   patients. Nat Commun 2018;9:1357.
               30.  Jensen JD, Knoop A, Laenkholm AV, Grauslund M, Jensen MB, et al. PIK3CA mutations, PTEN, and pHER2 expression and impact
                   on outcome in HER2-positive early-stage breast cancer patients treated with adjuvant chemotherapy and trastuzumab. Ann Oncol
                   2012;23:2034-42.
               31.  Zardavas D, Te Marvelde L, Milne RL, Fumagalli D, Fountzilas G, et al. Tumor PIK3CA genotype and prognosis in early-stage breast
                   cancer: a pooled analysis of individual patient data. J Clin Oncol 2018;36:981-90.
               32.  Paplomata E, O'Regan R. The PI3K/AKT/mTOR pathway in breast cancer: targets, trials and biomarkers. Ther Adv Med Oncol
                   2014;6:154-66.
               33.  Abraham J. PI3K/AKT/mTOR pathway inhibitors: the ideal combination partners for breast cancer therapies? Expert Rev Anticancer Ther
                   2015;15:51-68.
               34.  Bahrami A, Khazaei M, Shahidsales S, Hassanian SM, Hasanzadeh M, et al. The therapeutic potential of PI3K/Akt/mTOR inhibitors in
                   breast cancer: rational and progress. J Cell Biochem 2018;119:213-22.
               35.  Chia S, Gandhi S, Joy AA, Edwards S, Gorr M, et al. Novel agents and associated toxicities of inhibitors of the pi3k/Akt/mtor pathway for
                   the treatment of breast cancer. Curr Oncol 2015;22:33-48.
               36.  Ghayad SE, Cohen PA. Inhibitors of the PI3K/Akt/mTOR pathway: new hope for breast cancer patients. Recent Pat Anticancer Drug Discov
                   2010;5:29-57.
               37.  Lee JJ, Loh K, Yap YS. PI3K/Akt/mTOR inhibitors in breast cancer. Cancer Biol Med 2015;12:342-54.
               38. Bos PD, Zhang XH, Nadal C, Shu W, Gomis RR, et al. Genes that mediate breast cancer metastasis to the brain. Nature 2009;459:1005-9.
               39. Ulasov IV, Kaverina NV, Pytel P, Thaci B, Liu F, et al. Clinical significance of KISS1 protein expression for brain invasion and metastasis.
                   Cancer 2012;118:2096-105.
               40.  Neman J, Termini J, Wilczynski S, Vaidehi N, Choy C, et al. Human breast cancer metastases to the brain display GABAergic properties in
                   the neural niche. Proc Natl Acad Sci U S A 2014;111:984-9.
               41.  Smits A, Jin Z, Elsir T, Pedder H, Nister M, et al. GABA-A channel subunit expression in human glioma correlates with tumor histology
                   and clinical outcome. PLoS One 2012;7:e37041.
               42.  Quail DF, Joyce JA. The microenvironmental landscape of brain tumors. Cancer Cell 2017;31:326-41.
               43.  Pontes A, Zhang Y, Hu W. Novel functions of GABA signaling in adult neurogenesis. Front Biol (Beijing) 2013;8.
               44.  Berg DA, Belnoue L, Song H, Simon A. Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development
                   2013;140:2548-61.
               45.  Pohl SG, Brook N, Agostino M, Arfuso F, Kumar AP, et al. Wnt signaling in triple-negative breast cancer. Oncogenesis 2017;6:e310.
               46.  Bilir B, Kucuk O, Moreno CS. Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative
                   breast cancer cells. J Transl Med 2013;11:280.
               47.  King TD, Suto MJ, Li YH. The wnt/beta-catenin signaling pathway: a potential therapeutic target in the treatment of triple negative breast
                   cancer. J Cell Biochem 2012;113:13-8.
   274   275   276   277   278   279   280   281   282   283   284