Page 172 - Read Online
P. 172

Page 14 of 14                           Kamal et al. J Cancer Metastasis Treat 2019;5:11  I  http://dx.doi.org/10.20517/2394-4722.2018.89

                   brain barrier into brain and experimental brain metastases of breast cancer. Pharm Res 2009;26:2486-94.
               97.  Orthmann A, Zeisig R, Suss R, Lorenz D, Lemm M, et al. Treatment of experimental brain metastasis with MTO-liposomes: impact of
                   fluidity and LRP-targeting on the therapeutic result. Pharm Res 2012;29:1949-59.
               98.  Orthmann A, Peiker L, Fichtner I, Hoffmann A, Hilger RA, et al. Improved treatment of MT-3 breast cancer and brain metastases in a mouse
                   xenograft by LRP-targeted oxaliplatin liposomes. J Biomed Nanotechnol 2016;12:56-68.
               99.  Demeule M, Poirier J, Jodoin J, Bertrand Y, Desrosiers RR, et al. High transcytosis of melanotransferrin (P97) across the blood-brain barrier.
                   J Neurochem 2002;83:924-33.
               100. Dorries R. The role of T-cell-mediated mechanisms in virus infections of the nervous system. Curr Top Microbiol Immunol
                   2001;253:219-45.
               101.  Nounou MI, Adkins CE, Rubinchik E, Terrell-Hall TB, Afroz M, et al. Anti-cancer antibody trastuzumab-melanotransferrin conjugate
                   (BT2111) for the treatment of metastatic HER2+ breast cancer tumors in the brain: an in-vivo study. Pharm Res 2016;33:2930-42.
               102.  Ruoslahti E. Tumor penetrating peptides for improved drug delivery. Advanced Drug Delivery Reviews 2017;110-111:3-12.
               103.  Teesalu T, Sugahara KN, Ruoslahti E. Tumor-penetrating peptides. Front Oncol 2013;3:216.
               104.  Hamilton AM, Aidoudi-Ahmed S, Sharma S, Kotamraju VR, Foster PJ, et al. Nanoparticles coated with the tumor-penetrating peptide iRGD
                   reduce experimental breast cancer metastasis in the brain. J Mol Med (Berl) 2015;93:991-1001.
               105.  Pardridge WM. Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochem Res 1998;23:635-44.
               106.  Tsuji A. Small molecular drug transfer across the blood-brain barrier via carrier-mediated transport systems. NeuroRx 2005;2:54-62.
               107.  Chiou B, Neal EH, Bowman AB, Lippmann ES, Simpson IA, et al. Pharmaceutical iron formulations do not cross a model of the human
                   blood-brain barrier. PloS One 2018;13:e0198775.
               108.  Lameijer MA, Tang J, Nahrendorf M, Beelen RHJ, Mulder WJM. Monocytes and macrophages as nanomedicinal targets for improved
                   diagnosis and treatment of disease. Expert Rev Mol Diagn 2013;13:567-80.
               109.  Choi M-R, Bardhan R, Stanton-Maxey KJ, Badve S, Nakshatri H, et al. Delivery of nanoparticles to brain metastases of breast cancer using
                   a cellular Trojan horse. Cancer nanotechnol 2012;3:47-54.
               110.  Stalmans S, Bracke N, Wynendaele E, Gevaert B, Peremans K, et al. Cell-penetrating peptides selectively cross the blood-brain barrier in
                   vivo. PLoS One 2015;10:e0139652.
               111.  Mae M, Langel U. Cell-penetrating peptides as vectors for peptide, protein and oligonucleotide delivery. Curr Opin Pharmacol
                   2006;6:509-14.
               112.  Morshed RA, Muroski ME, Dai Q, Wegscheid ML, Auffinger B, et al. Cell-penetrating peptide-modified gold nanoparticles for the delivery
                   of doxorubicin to brain metastatic breast cancer. Mol Pharm 2016;13:1843-54.
               113.  Fu B, Long W, Zhang Y, Zhang A, Miao F, et al. Enhanced antitumor effects of the BRBP1 compound peptide BRBP1-TAT-KLA on human
                   brain metastatic breast cancer. Sci Rep 2015;5:8029.
               114.  Meyers JD, Doane T, Burda C, Basilion JP. Nanoparticles for imaging and treating brain cancer. Nanomedicine (Lond) 2013;8:123-43.
               115.  Kunjachan S, Pola R, Gremse F, Theek B, Ehling J, et al. Passive versus active tumor targeting using RGD- and NGR-modified polymeric
                   nanomedicines. Nano Lett 2014;14:972-81.
               116.  Golombek SK, May JN, Theek B, Appold L, Drude N, et al. Tumor targeting via EPR: strategies to enhance patient responses. Adv Drug
                   Deliv Rev 2018;130:17-38.
               117.  Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol 2015;88:20150207.
               118.  Kiessling F, Mertens ME, Grimm J, Lammers T. Nanoparticles for imaging: top or flop? Radiology 2014;273:10-28.
               119.  Kunjachan S, Rychlik B, Storm G, Kiessling F, Lammers T. Multidrug resistance: physiological principles and nanomedical solutions. Adv
                   Drug Deliv Rev 2013;65:1852-65.
               120.  Lammers T, Rizzo LY, Storm G, Kiessling F. Personalized nanomedicine. Clin Cancer Res 2012;18:4889-94.
               121.  Devarajan PV, Jindal AB, Patil RR, Mulla F, Gaikwad RV, et al. Particle shape: a new design parameter for passive targeting in splenotropic
                   drug delivery. J Pharm Sci 2010;99:2576-81.
               122.  Lammers T, Hennink WE, Storm G. Tumour-targeted nanomedicines: principles and practice. Br J Cancer 2008;99:392-7.
               123.  Rosenblum D, Joshi N, Tao W, Karp JM, Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat Commun
                   2018;9:1410.
               124.  Siegrist S, Corek E, Detampel P, Sandstrom J, Wick P, et al. Preclinical hazard evaluation strategy for nanomedicines. Nanotoxicology
                   2018;1-27.
   167   168   169   170   171   172   173   174   175   176   177