Page 171 - Read Online
P. 171

Kamal et al. J Cancer Metastasis Treat 2019;5:11  I  http://dx.doi.org/10.20517/2394-4722.2018.89                          Page 13 of 14

                   2013;2013:705265.
               60.  Mohammad AS, Griffith JI, Adkins CE, Shah N, Sechrest E, et al. Liposomal irinotecan accumulates in metastatic lesions, crosses the
                   blood-tumor barrier (BTB), and prolongs survival in an experimental model of brain metastases of triple negative breast cancer. Pharm Res
                   2018;35:31.
               61.  Hamidi M, Azadi A, Rafiei P. Pharmacokinetic consequences of pegylation. Drug Delivery 2006;13:399-409.
               62.  Salmaso S, Caliceti P. Stealth properties to improve therapeutic efficacy of drug nanocarriers. J Drug Deliv 2013;2013:374252.
               63.  Vail DM, Amantea MA, Colbern GT, Martin FJ, Hilger RA, et al. Pegylated liposomal doxorubicin: proof of principle using preclinical
                   animal models and pharmacokinetic studies. Semin Oncol 2004;31:16-35.
               64.  Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, et al. Characterization and anticancer activity of the micelle-forming polymeric
                   anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res 1990;50:1693-700.
               65.  James ND, Coker RJ, Tomlinson D, Harris JR, Gompels M, et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi's
                   sarcoma in AIDS. Clin Oncol (R Coll Radiol) 1994;6:294-6.
               66.  Muggia FM. Doxil in breast cancer. J Clin Oncol 1998;16:811-2.
               67.  Porche DJ. Liposomal doxorubicin (Doxil). J Assoc Nurses AIDS Care 1996;7:55-9.
               68.  Anders CK, Adamo B, Karginova O, Deal AM, Rawal S, et al. Pharmacokinetics and efficacy of PEGylated liposomal doxorubicin in an
                   intracranial model of breast cancer. PLoS One 2013;8:e61359.
               69.  Zhao X, Bentley MD, Ren Z, Viegas TX. Multi-arm polymer prodrugs. In: Therapeutics N, editor. The United States Patent and Trademark
                   Office. US: Nektar Therapeutics; 2013.
               70.  Zhang W. Method for preparing a polymer conjugate. USA: Nektar therapeutics; 2013.
               71.  Minamitani EL, Zappe H, Bossard MJ, Roczniak SO, Liu X. Polymer conjugates of kiss1 peptides. USA: Nektar therapeutics; 2011.
               72.  Hoch U, Eldon MA, Leung ACF. Treatment of patients suffering from cancer. In: Therapeutics N, editor. The United States Patent and
                   Trademark Office. US: Nektar Therapeutics; 2013.
               73.  Fishburn CS, Lechuga-Ballesteros D, Viegas T, Kuo M, Song Y, et al. Chemically modified small molecules. In: Therapeutics N, editor. The
                   United States Patent and Trademark Office. US: Nektar Therapeutics; 2011.
               74.  Eldon MA, Harite SS, Barker TL. Compositions and methods for achieving sustained therapeutic drug concentrations in a subject. In:
                   Therapeutics N, editor. The United States Patent and Trademark Office. US: Nektar Therapeutics; 2011.
               75.  Chen YC, Chiang CF, Chen LF, Liang PC, Hsieh WY, et al. Polymersomes conjugated with des-octanoyl ghrelin and folate as a BBB-
                   penetrating cancer cell-targeting delivery system. Biomaterials 2014;35:4066-81.
               76.  Adkins CE, Nounou MI, Hye T, Mohammad AS, Terrell-Hall T, et al. NKTR-102 Efficacy versus irinotecan in a mouse model of brain
                   metastases of breast cancer. BMC Cancer 2015;15:685.
               77.  Gaillard PJ. 2-BBB Products’ Pipline. Leiden Bio Science Park, The Netherlands: 2-BBB Medicines BV; 2018.
               78.  Geldenhuys W, Wehrung D, Groshev A, Hirani A, Sutariya V. Brain-targeted delivery of doxorubicin using glutathione-coated nanoparticles
                   for brain cancers. Pharm Dev Technol 2015;20:497-506.
               79.  Kanasty R, Dorkin JR, Vegas A, Anderson D. Delivery materials for siRNA therapeutics. Nat Mater 2013;12:967-77.
               80.  Wang G, Jia T, Xu X, Chang L, Zhang R, et al. Novel miR-122 delivery system based on MS2 virus like particle surface displaying cell-
                   penetrating peptide TAT for hepatocellular carcinoma. Oncotarget 2016;7:59402-16.
               81.  Zhang L, Sullivan PS, Goodman JC, Gunaratne PH, Marchetti D. MicroRNA-1258 suppresses breast cancer brain metastasis by targeting
                   heparanase. Cancer Res 2011;71:645-54.
               82.  Rodriguez-Devora JI, Ambure S, Shi Z-D, Yuan Y, Sun W, et al. Physically facilitating drug-delivery systems. Therapeutic delivery
                   2012;3:125-39.
               83.  Davalos RV, Rossmeisl JH, Garcia PA. Acute blood-brain barrier disruption using electrical energy based therapy. Virginia Tech Intellectual
                   Properties, Inc.; 2014.
               84.  Park EJ, Zhang YZ, Vykhodtseva N, McDannold N. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes
                   with trastuzumab in a breast cancer brain metastasis model. J Control Release 2012;163:277-84.
               85.  Kobus T, Zervantonakis IK, Zhang Y, McDannold NJ. Growth inhibition in a brain metastasis model by antibody delivery using focused
                   ultrasound-mediated blood-brain barrier disruption. J Control Release 2016;238:281-8.
               86.  Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided
                   focused ultrasound-induced blood-brain barrier disruption. Proceedings of the National Academy of Sciences 2006;103:11719-23.
               87.  Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided
                   focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A 2006;103:11719-23.
               88.  Nobs L, Buchegger F, Gurny R, Allemann E. Poly(lactic acid) nanoparticles labeled with biologically active Neutravidin for active targeting.
                   Eur J Pharm Biopharm 2004;58:483-90.
               89.  Prinzen L, Miserus RJ, Dirksen A, Hackeng TM, Deckers N, et al. Optical and magnetic resonance imaging of cell death and platelet
                   activation using annexin a5-functionalized quantum dots. Nano Lett 2007;7:93-100.
               90.  Wang YY, Lui PC, Li JY. Receptor-mediated therapeutic transport across the blood-brain barrier. Immunotherapy 2009;1:983-93.
               91.  Jones AR, Shusta EV. Blood-brain barrier transport of therapeutics via receptor-mediation. Pharm Res 2007;24:1759-71.
               92.  Lin NU. Targeted therapies in brain metastases. Curr Treat Options Neurol 2014;16:276.
               93.  Beliveau R. Method for transporting a compound across the blood-brain barrier. AngioChem Inc.; 2003.
               94.  Regina A, Demeule M, Che C, Lavallee I, Poirier J, et al. Antitumour activity of ANG1005, a conjugate between paclitaxel and the new
                   brain delivery vector Angiopep-2. Br J Pharmacol 2008;155:185-97.
               95.  Regina A, Demeule M, Tripathy S, Lord-Dufour S, Currie JC, et al. ANG4043, a novel brain-penetrant peptide-mAb conjugate, is
                   efficacious against HER2-positive intracranial tumors in mice. Mol Cancer Ther 2015;14:129-40.
               96.  Thomas FC, Taskar K, Rudraraju V, Goda S, Thorsheim HR, et al. Uptake of ANG1005, a novel paclitaxel derivative, through the blood-
   166   167   168   169   170   171   172   173   174   175   176