Page 425 - Read Online
P. 425
Cerna et al. Nanodrugs in brain tumors
EM, Ainslie KM. Enhanced stability of horseradish peroxidase 42. Fundarò A, Cavalli R, Bargoni A, Vighetto D, Zara GP, Gasco MR.
encapsulated in acetalated dextran microparticles stored outside cold Non-stealth and stealth solid lipid nanoparticles (SLN) carrying
chain conditions. Int J Pharm 2012;431:101-10. doxorubicin: pharmacokinetics and tissue distribution after i.v.
22. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat administration to rats. Pharmacol Res 2000;42:337-43.
Rev Cancer 2005;5:161-71. 43. Zara GP, Cavalli R, Bargoni A, Fundarò A, Vighetto D, Gasco
23. Juillerat-Jeanneret L. The targeted delivery of cancer drugs across MR. Intravenous administration to rabbits of non-stealth and
the blood-brain barrier: chemical modifications of drugs or drug- stealth doxorubicin-loaded solid lipid nanoparticles at increasing
nanoparticles? Drug Discov Today 2008;13:1099-106. concentrations of stealth agent: pharmacokinetics and distribution of
24. Drbohlavova J, Chomoucka J, Adam V, Ryvolova M, Eckschlager T, doxorubicin in brain and other tissues. J Drug Target 2002;10:327-35.
Hubalek J, Kizek R. Nanocarriers for anticancer drugs -- new trends 44. Gao H, Cao S, Yang Z, Zhang S, Zhang Q, Jiang X. Preparation,-
in nanomedicine. Curr Drug Metab 2013;14:547-64. characterization and anti-glioma effects of docetaxel-incorporated
25. Dawidczyk CM, Russell LM, Searson PC. Nanomedicines for cancer albumin-lipid nanoparticles. J Biomed Nanotechnol 2015;11:2137-47.
therapy: state-of-the-art and limitations to pre-clinical studies that 45. Kim SS, Rait A, Kim E, DeMarco J, Pirollo KF, Chang EH.
hinder future developments. Front Chem 2014;2:69. Encapsulation of temozolomide in a tumor-targeting nanocomplex
26. Hu C-MJ, Zhang L. Therapeutic nanoparticles to combat cancer drug enhances anti-cancer efficacy and reduces toxicity in a mouse model
resistance. Curr Drug Metab 2009;10:836-41. of glioblastoma. Cancer Lett 2015;369:250-8.
27. Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: 46. Auffinger B, Thaci B, Nigam P, Rincon E, Cheng Y, Lesniak MS. New
Passive and active tumor targeting of nanocarriers for anti-cancer drug therapeutic approaches for malignant glioma: in search of the Rosetta
delivery. J Control Release 2010;148:135-46. stone. F1000 Med Rep 2012;4:18.
28. Huynh E, Zheng G. Cancer nanomedicine: addressing the dark side of 47. Gromnicova R, Davies HA, Sreekanthreddy P, Romero IA, Lund T,
the enhanced permeability and retention effect. Nanomedicine (Lond.) Roitt IM, Phillips JB, Male DK. Glucose-coated gold nanoparticles
2015;10:1993-5. transfer across human brain endothelium and enter astrocytes in vitro.
29. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer PLoS One 2013;8:e81043.
R. Nanocarriers as an emerging platform for cancer therapy. Nat 48. Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules
Nanotechnol 2007;2:751-60. using immunoliposomes. Proc Natl Acad Sci U S A 1996;93:14164-9.
30. Pardridge WM. Vector-mediated drug delivery to the brain. Adv Drug 49. Krol S. Challenges in drug delivery to the brain: nature is against us. J
Deliv Rev 1999;36:299-321. Control Release 2012;164:145-55.
31. Bray N. Biologics: Transferrin’ bispecific antibodies across the blood- 50. Grahn AY, Bankiewicz KS, Dugich-Djordjevic M, Bringas JR,
brain barrier. Nat Rev Drug Discov 2015;14:14-5. Hadaczek P, Johnson GA, Eastman S, Luz M. Non-PEGylated
32. Alibolandi M, Ramezani M, Abnous K, Sadeghi F, Atyabi F, Asouri liposomes for convection-enhanced delivery of topotecan and
M, Ahmadi AA, Hadizadeh F. In vitro and in vivo evaluation of gadodiamide in malignant glioma: initial experience. J Neurooncol
therapy targeting epithelial-cell adhesion-molecule aptamers for non- 2009;95:185-97.
small cell lung cancer. J Control Release 2015;209:88-100. 51. Kreuter J. Drug delivery to the central nervous system by polymeric
33. Yang Z, Tang W, Luo X, Zhang X, Zhang C, Li H, Gao D, Luo H, Jiang nanoparticles: what do we know? Adv Drug Deliv Rev 2014;71:2-14.
Q, Liu J. Dual-ligand modified polymer-lipid hybrid nanoparticles for 52. Stockwell J, Abdi N, Lu X, Maheshwari O, Taghibiglou C. Novel
docetaxel targeting delivery to Her2/neu overexpressed human breast central nervous system drug delivery systems. Chem Biol Drug Des
cancer cells. J Biomed Nanotechnol 2015;11:1401-17. 2014;83:507-20.
34. Shan L, Liu M, Wu C, Zhao L, Li S, Xu L, Cao W, Gao G, Gu Y. 53. Thanasupawat T, Bergen H, Hombach-Klonisch S, Krcek J, Ghavami
Multi-small molecule conjugations as new targeted delivery carriers S, Del Bigio MR, Krawitz S, Stelmack G, Halayko A, McDougall M,
for tumor therapy. Int J Nanomedicine 2015;10:5571-91. Meier M, Stetefeld J, Klonisch T. Platinum (IV) coiled coil nanotubes
35. Assaraf YG, Leamon CP, Reddy JA. The folate receptor as a rational selectively kill human glioblastoma cells. Nanomedicine 2015;11:913-25.
therapeutic target for personalized cancer treatment. Drug Resist 54. Allhenn D, Boushehri MAS, Lamprecht A. Drug delivery strategies for
Updat 2014;17:89-95. the treatment of malignant gliomas. Int J Pharm 2012;436:299-310.
36. Goren D, Horowitz AT, Tzemach D, Tarshish M, Zalipsky S, Gabizon 55. Sumbria RK, Boado RJ, Pardridge WM. Brain protection from stroke
A. Nuclear delivery of doxorubicin via folate-targeted liposomes with intravenous TNFα decoy receptor-Trojan horse fusion protein. J
with bypass of multidrug-resistance efflux pump. Clin Cancer Res Cereb Blood Flow Metab 2012;32:1933-8.
2007;6:1949-57. 56. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis:
37. Pan X, Lee RJ. Tumor-selective drug delivery via folate receptor- a useful target for cancer therapy. J Membr Biol 2014;247:291-307.
targeted liposomes. Expert Opin Drug Deliv 2004;1:7-17. 57. Miao D, Jiang M, Liu Z, Gu G, Hu Q, Kang T, Song Q, Yao L, Li W, Gao
38. Guo L, Zhang H, Wang F, Liu P, Wang Y, Xia G, Liu R, Li X, Yin X, Sun M, Chen J. Co-administration of dual-targeting nanoparticles
H, Jiang H, Chen B. Targeted multidrug-resistance reversal in tumor with penetration enhancement peptide for antiglioblastoma therapy.
based on PEG-PLL-PLGA polymer nano drug delivery system. Int J Mol Pharm 2014;11:90-101.
Nanomedicine 2015;10:4535-47. 58. Kuo YC, Shih-Huang CY. Solid lipid nanoparticles carrying
39. Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan chemotherapeutic drug across the blood-brain barrier through insulin
X. H-ferritin-nanocaged doxorubicin nanoparticles specifically target receptor-mediated pathway. J Drug Target 2013;21:730-8.
and kill tumors with a single-dose injection. Proc Natl Acad Sci 2014; 59. Shilo M, Motiei M, Hana P, Popovtzer R. Transport of nanoparticles
111:14900-5. through the blood-brain barrier for imaging and therapeutic
40. Cao Y, Zhou Y, Zhuang Q, Cui L, Xu X, Xu R, He X. Anti-tumor applications. Nanoscale 2014;6:2146-52.
effect of RGD modified PTX loaded liposome on prostatic cancer. Int 60. Gao JQ, Lv Q, Li LM, Tang XJ, Li FZ, Hu YL, Han M. Glioma
J Clin Exp Med 2015;8:12182-91. targeting and blood-brain barrier penetration by dual-targeting
41. Orringer DA, Koo YE, Chen T, Kopelman R, Sagher O, Philbert MA. doxorubincin liposomes. Biomaterials 2013;34:5628-39.
Small solutions for big problems: the application of nanoparticles to brain 61. Boado RJ, Hui EK-W, Lu JZ, Sumbria RK, Pardridge WM. Blood-
tumor diagnosis and therapy. Clin Pharmacol Ther 2009;85:531-4. brain barrier molecular trojan horse enables imaging of brain uptake of
Journal of Cancer Metastasis and Treatment ¦ Volume 2 ¦ October 31, 2016 415