Page 39 - Read Online
P. 39

Rabadi et al. J Cancer Metastasis Treat 2022;8:24  https://dx.doi.org/10.20517/2394-4722.2022.06  Page 13 of 14

                    Cancer Immunol Immunother 2018;67:1685-94.  DOI  PubMed
               48.       Kuang L, He Y. Potential value of V-domain Ig suppressor of T-cell activation for assessing progn osis in cervical cancer and as a
                    target for therapy. Int J Clin Exp Pathol 2020;13:26-37.  PubMed  PMC
               49.       Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat
                    Med 2018;24:541-50.  DOI  PubMed  PMC
               50.       Érsek B, Silló P, Cakir U, et al. Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune
                    checkpoint regulators via increased arginase activity. Cell Mol Life Sci 2021;78:661-73.  DOI  PubMed  PMC
               51.       Blando J, Sharma A, Higa MG, et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a
                    potential target in pancreatic cancer. Proc Natl Acad Sci USA 2019;116:1692-7.  DOI  PubMed  PMC
               52.       Wang X, Teng F, Kong L, Yu J. PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther
                    2016;9:5023-39.  DOI  PubMed  PMC
               53.       Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-
                    4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol 2016;57:54-60.  DOI  PubMed
               54.       Hong S, Yuan Q, Xia H, et al. Analysis of VISTA expression and function in renal cell carcinoma highlights VISTA as a potential
                    target for immunotherapy. Protein Cell 2019;10:840-5.  DOI  PubMed  PMC
               55.       Jin J, Lin J, Xu A, et al. CCL2: An important mediator between tumor cells and host cells in tumor microenvironment. Front Oncol
                    2021;11:722916.  DOI  PubMed  PMC
               56.       Weber R, Fleming V, Hu X, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors.
                    Front Immunol 2018;9:1310.  DOI  PubMed  PMC
               57.       Clavijo PE, Moore EC, Chen J, et al. Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of
                    granulocytic myeloid cells. Oncotarget 2017;8:55804-20.  DOI  PubMed  PMC
               58.       Deng J, Li J, Sarde A, et al. Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the
                    tumor microenvironment. Cancer Immunol Res 2019;7:1079-90.  DOI  PubMed  PMC
               59.       Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The roles of tumor-associated macrophages in tumor angiogenesis and
                    metastasis. Cell Immunol 2020;353:104119.  DOI  PubMed
               60.       Ceeraz S, Eszterhas SK, Sergent PA, et al. VISTA deficiency attenuates antibody-induced arthritis and alters macrophage gene
                    expression in response to simulated immune complexes. Arthritis Res Ther 2017;19:270.  DOI  PubMed  PMC
               61.       Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol 2017;45:43-51.  DOI  PubMed  PMC
               62.       Wang L, Jia B, Claxton DF, et al. VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients
                    with AML. Oncoimmunology 2018;7:e1469594.  DOI  PubMed  PMC
               63.       Xu W, Dong J, Zheng Y, et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-
                    mediated inflammation and immunosuppression. Cancer Immunol Res 2019;7:1497-510.  DOI  PubMed  PMC
               64.       Ohno T, Zhang C, Kondo Y, et al. The immune checkpoint molecule VISTA regulates allergen-specific Th2-mediated immune
                    responses. Int Immunol 2018;30:3-11.  DOI  PubMed
               65.       Samoszuk M. Eosinophils and human cancer. Histol Histopathol 1997;12:807-12.  PubMed
               66.       Liu H, Li X, Hu L, et al. A crucial role of the PD-1H coinhibitory receptor in suppressing experimental asthma. Cell Mol Immunol
                    2018;15:838-45.  DOI  PubMed  PMC
               67.       ElTanbouly MA, Zhao Y, Schaafsma E, et al. VISTA: a target to manage the innate cytokine storm. Front Immunol 2020;11:595950.
                    DOI  PubMed  PMC
               68.       Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The Nature of myeloid-derived suppressor cells in the tumor microenvironment.
                    Trends Immunol 2016;37:208-20.  DOI  PubMed  PMC
               69.       Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells 2020;9:561.
                    DOI  PubMed  PMC
               70.       Wang Q, He J, Flies DB, Luo L, Chen L. Programmed death one homolog maintains the pool size of regulatory T cells by promoting
                    their differentiation and stability. Sci Rep 2017;7:6086.  DOI  PubMed  PMC
               71.       Wei SC, Anang NAS, Sharma R, et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms
                    partially distinct from monotherapies. Proc Natl Acad Sci USA 2019;116:22699-709.  DOI  PubMed  PMC
               72.       Im SJ, Ha SJ. Re-defining T-Cell exhaustion: subset, function, and regulation. Immune Netw 2020;20:e2.  DOI  PubMed  PMC
                                                                 +
               73.       Miller BC, Sen DR, Al Abosy R, et al. Subsets of exhausted CD8  T cells differentially mediate tumor control and respond to
                    checkpoint blockade. Nat Immunol 2019;20:326-36.  DOI
               74.       Johnston RJ, Su LJ, Pinckney J, et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature 2019;574:565-70.  DOI  PubMed
               75.       Wang J, Wu G, Manick B, et al. VSIG-3 as a ligand of VISTA inhibits human T-cell function. Immunology 2019;156:74-85.  DOI
                    PubMed  PMC
               76.       Rogers BM, Smith L, Dezso Z, et al. VISTA is an activating receptor in human monocytes. J Exp Med 2021;218:e20201601.  DOI
                    PubMed  PMC
               77.       Yoon KW, Byun S, Kwon E, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science
                    2015;349:1261669.  DOI  PubMed  PMC
               78.       Carlow DA, Gossens K, Naus S, Veerman KM, Seo W, Ziltener HJ. PSGL-1 function in immunity and steady state homeostasis.
                    Immunol Rev 2009;230:75-96.  DOI  PubMed
   34   35   36   37   38   39   40   41   42   43   44