Page 39 - Read Online
P. 39
Rabadi et al. J Cancer Metastasis Treat 2022;8:24 https://dx.doi.org/10.20517/2394-4722.2022.06 Page 13 of 14
Cancer Immunol Immunother 2018;67:1685-94. DOI PubMed
48. Kuang L, He Y. Potential value of V-domain Ig suppressor of T-cell activation for assessing progn osis in cervical cancer and as a
target for therapy. Int J Clin Exp Pathol 2020;13:26-37. PubMed PMC
49. Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat
Med 2018;24:541-50. DOI PubMed PMC
50. Érsek B, Silló P, Cakir U, et al. Melanoma-associated fibroblasts impair CD8+ T cell function and modify expression of immune
checkpoint regulators via increased arginase activity. Cell Mol Life Sci 2021;78:661-73. DOI PubMed PMC
51. Blando J, Sharma A, Higa MG, et al. Comparison of immune infiltrates in melanoma and pancreatic cancer highlights VISTA as a
potential target in pancreatic cancer. Proc Natl Acad Sci USA 2019;116:1692-7. DOI PubMed PMC
52. Wang X, Teng F, Kong L, Yu J. PD-L1 expression in human cancers and its association with clinical outcomes. Onco Targets Ther
2016;9:5023-39. DOI PubMed PMC
53. Kondo Y, Ohno T, Nishii N, Harada K, Yagita H, Azuma M. Differential contribution of three immune checkpoint (VISTA, CTLA-
4, PD-1) pathways to antitumor responses against squamous cell carcinoma. Oral Oncol 2016;57:54-60. DOI PubMed
54. Hong S, Yuan Q, Xia H, et al. Analysis of VISTA expression and function in renal cell carcinoma highlights VISTA as a potential
target for immunotherapy. Protein Cell 2019;10:840-5. DOI PubMed PMC
55. Jin J, Lin J, Xu A, et al. CCL2: An important mediator between tumor cells and host cells in tumor microenvironment. Front Oncol
2021;11:722916. DOI PubMed PMC
56. Weber R, Fleming V, Hu X, et al. Myeloid-derived suppressor cells hinder the anti-cancer activity of immune checkpoint inhibitors.
Front Immunol 2018;9:1310. DOI PubMed PMC
57. Clavijo PE, Moore EC, Chen J, et al. Resistance to CTLA-4 checkpoint inhibition reversed through selective elimination of
granulocytic myeloid cells. Oncotarget 2017;8:55804-20. DOI PubMed PMC
58. Deng J, Li J, Sarde A, et al. Hypoxia-induced VISTA promotes the suppressive function of myeloid-derived suppressor cells in the
tumor microenvironment. Cancer Immunol Res 2019;7:1079-90. DOI PubMed PMC
59. Fu LQ, Du WL, Cai MH, Yao JY, Zhao YY, Mou XZ. The roles of tumor-associated macrophages in tumor angiogenesis and
metastasis. Cell Immunol 2020;353:104119. DOI PubMed
60. Ceeraz S, Eszterhas SK, Sergent PA, et al. VISTA deficiency attenuates antibody-induced arthritis and alters macrophage gene
expression in response to simulated immune complexes. Arthritis Res Ther 2017;19:270. DOI PubMed PMC
61. Veglia F, Gabrilovich DI. Dendritic cells in cancer: the role revisited. Curr Opin Immunol 2017;45:43-51. DOI PubMed PMC
62. Wang L, Jia B, Claxton DF, et al. VISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients
with AML. Oncoimmunology 2018;7:e1469594. DOI PubMed PMC
63. Xu W, Dong J, Zheng Y, et al. Immune-checkpoint protein VISTA regulates antitumor immunity by controlling myeloid cell-
mediated inflammation and immunosuppression. Cancer Immunol Res 2019;7:1497-510. DOI PubMed PMC
64. Ohno T, Zhang C, Kondo Y, et al. The immune checkpoint molecule VISTA regulates allergen-specific Th2-mediated immune
responses. Int Immunol 2018;30:3-11. DOI PubMed
65. Samoszuk M. Eosinophils and human cancer. Histol Histopathol 1997;12:807-12. PubMed
66. Liu H, Li X, Hu L, et al. A crucial role of the PD-1H coinhibitory receptor in suppressing experimental asthma. Cell Mol Immunol
2018;15:838-45. DOI PubMed PMC
67. ElTanbouly MA, Zhao Y, Schaafsma E, et al. VISTA: a target to manage the innate cytokine storm. Front Immunol 2020;11:595950.
DOI PubMed PMC
68. Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The Nature of myeloid-derived suppressor cells in the tumor microenvironment.
Trends Immunol 2016;37:208-20. DOI PubMed PMC
69. Law AMK, Valdes-Mora F, Gallego-Ortega D. Myeloid-derived suppressor cells as a therapeutic target for cancer. Cells 2020;9:561.
DOI PubMed PMC
70. Wang Q, He J, Flies DB, Luo L, Chen L. Programmed death one homolog maintains the pool size of regulatory T cells by promoting
their differentiation and stability. Sci Rep 2017;7:6086. DOI PubMed PMC
71. Wei SC, Anang NAS, Sharma R, et al. Combination anti-CTLA-4 plus anti-PD-1 checkpoint blockade utilizes cellular mechanisms
partially distinct from monotherapies. Proc Natl Acad Sci USA 2019;116:22699-709. DOI PubMed PMC
72. Im SJ, Ha SJ. Re-defining T-Cell exhaustion: subset, function, and regulation. Immune Netw 2020;20:e2. DOI PubMed PMC
+
73. Miller BC, Sen DR, Al Abosy R, et al. Subsets of exhausted CD8 T cells differentially mediate tumor control and respond to
checkpoint blockade. Nat Immunol 2019;20:326-36. DOI
74. Johnston RJ, Su LJ, Pinckney J, et al. VISTA is an acidic pH-selective ligand for PSGL-1. Nature 2019;574:565-70. DOI PubMed
75. Wang J, Wu G, Manick B, et al. VSIG-3 as a ligand of VISTA inhibits human T-cell function. Immunology 2019;156:74-85. DOI
PubMed PMC
76. Rogers BM, Smith L, Dezso Z, et al. VISTA is an activating receptor in human monocytes. J Exp Med 2021;218:e20201601. DOI
PubMed PMC
77. Yoon KW, Byun S, Kwon E, et al. Control of signaling-mediated clearance of apoptotic cells by the tumor suppressor p53. Science
2015;349:1261669. DOI PubMed PMC
78. Carlow DA, Gossens K, Naus S, Veerman KM, Seo W, Ziltener HJ. PSGL-1 function in immunity and steady state homeostasis.
Immunol Rev 2009;230:75-96. DOI PubMed