Page 78 - Read Online
P. 78
Lue et al. J Cancer Metastasis Treat 2022;8:11 https://dx.doi.org/10.20517/2394-4722.2021.193 Page 21 of 25
the rituximab era. J Clin Oncol 2010;28:4184-90. DOI PubMed PMC
54. Schuster SJ, Bishop MR, Tam CS, et al; JULIET Investigators. Tisagenlecleucel in adult relapsed or refractory diffuse large B-Cell
lymphoma. N Engl J Med 2019;380:45-56. DOI PubMed
55. Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-Cell therapy in refractory large B-Cell lymphoma. N Engl
J Med 2017;377:2531-44. DOI PubMed PMC
56. Locke FL, Ghobadi A, Jacobson CA, et al. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell
lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. The Lancet Oncology 2019;20:31-42. DOI PubMed PMC
57. Schuster SJ, Bishop MR, Tam CS, et al. Long-term follow-up of tisagenlecleucel in adult patients with relapsed or refractory diffuse
large B-Cell lymphoma: updated analysis of juliet study. Biology of Blood and Marrow Transplantation 2019;25:S20-1. DOI
58. Compagno M, Lim WK, Grunn A, et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell
lymphoma. Nature 2009;459:717-21. DOI PubMed PMC
59. Honma K, Tsuzuki S, Nakagawa M, et al. TNFAIP3/A20 functions as a novel tumor suppressor gene in several subtypes of non-
Hodgkin lymphomas. Blood 2009;114:2467-75. DOI PubMed
60. Rawlings DJ, Sommer K, Moreno-García ME. The CARMA1 signalosome links the signalling machinery of adaptive and innate
immunity in lymphocytes. Nat Rev Immunol 2006;6:799-812. DOI PubMed
61. Davis RE, Ngo VN, Lenz G, et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010;463:88-
92. DOI PubMed PMC
62. Ngo VN, Young RM, Schmitz R, et al. Oncogenically active MYD88 mutations in human lymphoma. Nature 2011;470:115-9. DOI
PubMed PMC
63. Hailfinger S, Lenz G, Ngo V, et al. Essential role of MALT1 protease activity in activated B cell-like diffuse large B-cell lymphoma.
Proc Natl Acad Sci U S A 2009;106:19946-51. DOI PubMed PMC
64. Phelan JD, Young RM, Webster DE, et al. A multiprotein supercomplex controlling oncogenic signalling in lymphoma. Nature
2018;560:387-91. DOI PubMed PMC
65. Lucas PC, Yonezumi M, Inohara N, et al. Bcl10 and MALT1, independent targets of chromosomal translocation in malt lymphoma,
cooperate in a novel NF-kappa B signaling pathway. J Biol Chem 2001;276:19012-9. DOI PubMed
66. Wilson WH, Young RM, Schmitz R, et al. Targeting B cell receptor signaling with ibrutinib in diffuse large B cell lymphoma. Nat
Med 2015;21:922-6. DOI PubMed PMC
67. Dyer MJ, De Vos S, Ruan J, et al. Acalabrutinib monotherapy in patients (pts) with relapsed/refractory (R/R) diffuse large B-cell
lymphoma (DLBCL). JCO 2018;36:7547-7547. DOI
68. Roschewski M, Izumi R, Hamdy A, et al. PRISM: A Platform Protocol for the Treatment of Relapsed/Refractory Aggressive Non-
Hodgkin Lymphoma. Blood 2019;134:2869. DOI
69. Cummin T, Caddy J, Mercer K, et al. Accept: a phase IB/II combination of Acalabrutinib with rituximab, cyclophosphamide,
doxorubicin, vincristine and prednisolone (R-Chop) for patients with diffuse large b-cell lymphoma (DLBCL). Hematol Oncol
2019;37:71-2. DOI
70. Johnson PWM, Caddy J, Cumin T, et al. Abstract CT162: ACCEPT: A phase Ib/II combination of acalabrutinib with rituximab,
cyclophosphamide, doxorubicin, vincristine and prednisolone (R-CHOP) for patients with diffuse large B-cell lymphoma (DLBCL).
Cancer research 2018;78(13 Supplement):CT162-CT162.DOI: 10.1158/1538-7445.am2018-ct162. DOI
71. Lin SC, Lo YC, Wu H. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling. Nature 2010;465:885-90.
DOI PubMed PMC
72. Motshwene PG, Moncrieffe MC, Grossmann JG, et al. An oligomeric signaling platform formed by the Toll-like receptor signal
transducers MyD88 and IRAK-4. J Biol Chem 2009;284:25404-11. DOI PubMed PMC
73. Beutler B, Jiang Z, Georgel P, et al. Genetic analysis of host resistance: toll-like receptor signaling and immunity at large. Annu Rev
Immunol 2006;24:353-89. DOI PubMed
74. Nowakowski GS, Leslie LA, Younes A, et al. Safety, pharmacokinetics and activity of CA-4948, an IRAK4 inhibitor, for treatment
of patients with relapsed or refractory hematologic malignancies: results from the phase 1 study. Blood 2020;136:44-5. DOI
75. Nowakowski GS, Leslie LA, Joffe E, et al. A multi-center, dose-finding study to assess safety, tolerability, pharmacokinetics and
preliminary efficacy of a novel irak4 inhibitor ca-4948 in combination with IBRUTINIB, in patients with relapsed or refractory
hematologic malignancies. Blood 2020;136:49-50. DOI
76. Kelleher J, Campbell V, Chen J, et al. Kym-001, a first-in-class oral irak4 protein degrader, induces tumor regression in
XENOGRAFT models of myd88-mutant ABC DLBCL alone and in combination with BTK inhibition. Hematol Oncol 2019;37:129-
129. DOI
77. Walker D, Mayo M, Klaus C, et al. Ktx-120, a Novel IRAKIMID degrader of IRAK4 and IMID substrates shows preferential activity
and induces regressions in MYD88-mutant DLBCL CDX and PDX models. Blood 2020;136:41. DOI
78. Lue JK, Manavalan JS, Klaus C, et al. Targeting MYD88-Mutant DLBCL with IRAKIMIDS: a comparison to IRAK4 kinase
inhibition and evaluation of synergy with rational combinations. Blood 2020;136:12. DOI
79. Fontan L, Yang C, Kabaleeswaran V, et al. MALT1 small molecule inhibitors specifically suppress ABC-DLBCL in vitro and in
vivo. Cancer Cell 2012;22:812-24. DOI PubMed PMC
80. Philippar U, Lu T, Vloemans N, et al. Discovery of a novel, potential first-in-class malt1 protease inhibitor for the treatment of B cell
lymphomas. Hematol Oncol 2019;37:128-128. DOI