Page 96 - Read Online
P. 96
Solimando et al. J Cancer Metastasis Treat 2022;8:9 https://dx.doi.org/10.20517/2394-4722.2021.166 Page 11 of 12
43. Pietras EM, Mirantes-Barbeito C, Fong S, et al. Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious
myeloid differentiation at the expense of self-renewal. Nat Cell Biol 2016;18:607-18. DOI PubMed PMC
44. Ruchala P, Nemeth E. The pathophysiology and pharmacology of hepcidin. Trends Pharmacol Sci 2014;35:155-61. DOI PubMed
PMC
45. Ganz T, Nemeth E. Hepcidin and disorders of iron metabolism. Annu Rev Med 2011;62:347-60. DOI PubMed
46. Keel SB, Abkowitz JL. The microcytic red cell and the anemia of inflammation. N Engl J Med 2009;361:1904-6. DOI PubMed PMC
47. Hom J, Dulmovits BM, Mohandas N, Blanc L. The erythroblastic island as an emerging paradigm in the anemia of inflammation.
Immunol Res 2015;63:75-89. DOI PubMed PMC
48. Barreyro L, Chlon TM, Starczynowski DT. Chronic immune response dysregulation in MDS pathogenesis. Blood 2018;132:1553-60.
DOI PubMed PMC
49. Matatall KA, Jeong M, Chen S, et al. Chronic infection depletes hematopoietic stem cells through stress-induced terminal
differentiation. Cell Rep 2016;17:2584-95. DOI PubMed PMC
50. Florez MA, Matatall KA, Jeong Y, et al. Interferon gamma mediates hematopoietic stem cell activation and niche relocalization
through BST2. Cell Rep 2020;33:108530. DOI PubMed PMC
51. Schneider RK, Schenone M, Ferreira MV, et al. Rps14 haploinsufficiency causes a block in erythroid differentiation mediated by
S100A8 and S100A9. Nat Med 2016;22:288-97. DOI PubMed PMC
52. Ribezzo F, Snoeren IAM, Ziegler S, et al. Rps14, Csnk1a1 and miRNA145/miRNA146a deficiency cooperate in the clinical phenotype
and activation of the innate immune system in the 5q- syndrome. Leukemia 2019;33:1759-72. DOI PubMed
53. Zambetti NA, Ping Z, Chen S, et al. Mesenchymal inflammation drives genotoxic stress in hematopoietic stem cells and predicts
disease evolution in human pre-leukemia. Cell Stem Cell 2016;19:613-27. DOI PubMed
54. Sallman DA, Cluzeau T, Basiorka AA, List A. Unraveling the pathogenesis of MDS: the NLRP3 inflammasome and pyroptosis drive
the MDS phenotype. Front Oncol 2016;6:151. DOI PubMed PMC
55. Arranz L, Sánchez-Aguilera A, Martín-Pérez D, et al. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative
neoplasms. Nature 2014;512:78-81. DOI PubMed
56. Decker M, Martinez-Morentin L, Wang G, et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary
myelofibrosis. Nat Cell Biol 2017;19:677-88. DOI PubMed PMC
57. Hanoun M, Zhang D, Mizoguchi T, et al. Acute myelogenous leukemia-induced sympathetic neuropathy promotes malignancy in an
altered hematopoietic stem cell niche. Cell Stem Cell 2014;15:365-75. DOI PubMed PMC
58. Meisel M, Hinterleitner R, Pacis A, et al. Microbial signals drive pre-leukaemic myeloproliferation in a Tet2-deficient host. Nature
2018;557:580-4. DOI PubMed PMC
59. Schepers K, Pietras EM, Reynaud D, et al. Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-
reinforcing leukemic niche. Cell Stem Cell 2013;13:285-99. DOI PubMed PMC
60. Kaufmann E, Sanz J, Dunn JL, et al. BCG educates hematopoietic stem cells to generate protective innate immunity against
tuberculosis. Cell 2018;172:176-90.e19. DOI PubMed
61. Steer K, Stavnichuk M, Morris M, Komarova SV. Bone health in patients with hematopoietic disorders of bone marrow origin:
systematic review and meta-analysis. J Bone Miner Res 2017;32:731-42. DOI PubMed
62. Kramann R, Schneider RK, DiRocco DP, et al. Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis.
Cell Stem Cell 2015;16:51-66. DOI PubMed PMC
+
63. Schneider RK, Mullally A, Dugourd A, et al. Gli1 mesenchymal stromal cells are a key driver of bone marrow fibrosis and an
important cellular therapeutic target. Cell Stem Cell 2017;20:785-800.e8. DOI PubMed PMC
64. Leimkühler NB, Gleitz HFE, Ronghui L, et al. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable
alarmin axis. Cell Stem Cell 2021;28:637-52.e8. DOI PubMed PMC
65. Pellagatti A, Hellström-Lindberg E, Giagounidis A, et al. Haploinsufficiency of RPS14 in 5q- syndrome is associated with
deregulation of ribosomal- and translation-related genes. Br J Haematol 2008;142:57-64. DOI PubMed PMC
66. Kovačić M, Mitrović-Ajtić O, Beleslin-Čokić B, et al. TLR4 and RAGE conversely mediate pro-inflammatory S100A8/9-mediated
inhibition of proliferation-linked signaling in myeloproliferative neoplasms. Cell Oncol (Dordr) 2018;41:541-53. DOI PubMed
67. Nemeth E, Rivera S, Gabayan V, et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory
hormone hepcidin. J Clin Invest 2004;113:1271-6. DOI PubMed PMC
68. Koschmieder S, Mughal TI, Hasselbalch HC, et al. Myeloproliferative neoplasms and inflammation: whether to target the malignant
clone or the inflammatory process or both. Leukemia 2016;30:1018-24. DOI PubMed
69. Galán-Díez M, Cuesta-Domínguez Á, Kousteni S. The bone marrow microenvironment in health and myeloid malignancy. Cold
Spring Harb Perspect Med 2018;8:a031328. DOI PubMed PMC
70. Lamanuzzi A, Saltarella I, Desantis V, et al. Inhibition of mTOR complex 2 restrains tumor angiogenesis in multiple myeloma.
Oncotarget 2018;9:20563-77. DOI PubMed PMC
71. Girelli D, Nemeth E, Swinkels DW. Hepcidin in the diagnosis of iron disorders. Blood 2016;127:2809-13. DOI PubMed PMC
72. Lorenz L, Peter A, Poets CF, Franz AR. A review of cord blood concentrations of iron status parameters to define reference ranges for
preterm infants. Neonatology 2013;104:194-202. DOI PubMed
73. Goodnough LT, Schrier SL. Evaluation and management of anemia in the elderly. Am J Hematol 2014;89:88-96. DOI PubMed PMC
74. Ganz T. Anemia of inflammation. N Engl J Med 2019;381:1148-57. DOI
75. Frodermann V, Rohde D, Courties G, et al. Exercise reduces inflammatory cell production and cardiovascular inflammation via
instruction of hematopoietic progenitor cells. Nat Med 2019;25:1761-71. DOI PubMed PMC