Page 36 - Read Online
P. 36
Merhi et al. J Cancer Metastasis Treat 2021;7:42 https://dx.doi.org/10.20517/2394-4722.2021.80 Page 15 of 16
51. Bouchet S, Tang R, Fava F, Legrand O, Bauvois B. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-
dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13. Oncotarget 2016;7:19445-67. DOI
PubMed PMC
52. Bauvois B, Dumont J, Mathiot C, Kolb JP. Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by
interferons. Leukemia 2002;16:791-8. DOI PubMed
53. Bauvois B, Pramil E, Jondreville L, et al. Relation of neutrophil gelatinase-associated lipocalin overexpression to the resistance to
apoptosis of tumor B cells in chronic lymphocytic leukemia. Cancers (Basel) 2020;12:2124. DOI PubMed PMC
54. Trocme C, Gaudin P, Berthier S, Barro C, Zaoui P, Morel F. Human B lymphocytes synthesize the 92-kDa gelatinase, matrix
metalloproteinase-9. J Biol Chem 1998;273:20677-84. DOI PubMed
55. Munaut C, Noel A, Hougrand O, Foidart JM, Boniver J, Deprez M. Vascular endothelial growth factor expression correlates with
matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas. Int J Cancer 2003;106:848-55. DOI PubMed
56. Bauvois B, Pramil E, Jondreville L, Quiney C, Nguyen-Khac F, Susin SA. Activation of interferon signaling in chronic lymphocytic
leukemia cells contributes to apoptosis resistance via a JAK-Src/STAT3/Mcl-1 signaling pathway. Biomedicines 2021;9:188. DOI
PubMed PMC
57. Wang ZB, Liu YQ, Cui YF. Pathways to caspase activation. Cell Biol Int 2005;29:489-96. DOI PubMed
58. Paupert J, Mansat-De Mas V, Demur C, Salles B, Muller C. Cell-surface MMP-9 regulates the invasive capacity of leukemia blast
cells with monocytic features. Cell Cycle 2008;7:1047-53. DOI PubMed
59. Toth M, Gervasi DC, Fridman R. Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in human MCF10A
breast epithelial cells. Cancer Res 1997;57:3159-67. PubMed
60. Ogata Y, Enghild JJ, Nagase H. Matrix metalloproteinase 3 (stromelysin) activates the precursor for the human matrix
metalloproteinase 9. J Biol Chem 1992;267:3581-4. PubMed
61. Knäuper V, Smith B, López-Otin C, Murphy G. Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur J
Biochem 1997;248:369-73. DOI PubMed
62. Aggarwal BB, Kunnumakkara AB, Harikumar KB, et al. Signal transducer and activator of transcription-3, inflammation, and cancer:
how intimate is the relationship? Ann N Y Acad Sci 2009;1171:59-76. DOI PubMed PMC
63. Tolomeo M, Cascio A. The multifaced role of STAT3 in cancer and its implication for anticancer therapy. Int J Mol Sci 2021;22:603.
DOI PubMed PMC
64. Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9
(MMP-9): the next decade. Crit Rev Biochem Mol Biol 2013;48:222-72. DOI PubMed
65. Choueiri TK, Kaelin WG, Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med 2020;26:1519-30. DOI PubMed
66. Aref S, Osman E, Mansy S, et al. Prognostic relevance of circulating matrix metalloproteinase-2 in acute myeloid leukaemia patients.
Hematol Oncol 2007;25:121-6. DOI PubMed
67. Martelli AM, Nyåkern M, Tabellini G, et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for
human acute myeloid leukemia. Leukemia 2006;20:911-28. DOI PubMed
68. Dona M, Dell’Aica I, Pezzato E, et al. Hyperforin inhibits cancer invasion and metastasis. Cancer Res 2004;64:6225-32. DOI
PubMed
69. Kampen KR, Ter Elst A, de Bont ES. Vascular endothelial growth factor signaling in acute myeloid leukemia. Cell Mol Life Sci
2013;70:1307-17. DOI PubMed
70. Wiszniak S, Schwarz Q. Exploring the intracrine functions of VEGF-A. Biomolecules 2021;11:128. DOI PubMed PMC
71. Redondo-Munoz J, Ugarte-Berzal E, Terol MJ, et al. Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell
survival through its hemopexin domain. Cancer Cell 2010;17:160-72. DOI PubMed
72. Stefanidakis M, Karjalainen K, Jaalouk DE, et al. Role of leukemia cell invadosome in extramedullary infiltration. Blood
2009;114:3008-17. DOI PubMed PMC
73. Kortlepel K, Bendall LJ, Gottlieb DJ. Human acute myeloid leukaemia cells express adhesion proteins and bind to bone marrow
fibroblast monolayers and extracellular matrix proteins. Leukemia 1993;7:1174-9. PubMed
74. Sell TS, Belkacemi T, Flockerzi V, Beck A. Protonophore properties of hyperforin are essential for its pharmacological activity. Sci
Rep 2014;4:7500. DOI PubMed PMC
75. Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 2015;57:130-46. DOI
PubMed
76. George KS, Wu S. Lipid raft: a floating island of death or survival. Toxicol Appl Pharmacol 2012;259:311-9. DOI PubMed PMC
77. Nichols B. Caveosomes and endocytosis of lipid rafts. J Cell Sci 2003;116:4707-14. DOI PubMed
78. Salaün C, James DJ, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic 2004;5:255-64. DOI PubMed PMC
79. Hanzal-Bayer MF, Hancock JF. Lipid rafts and membrane traffic. FEBS Lett 2007;581:2098-104. DOI PubMed
80. Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis,
microparticles, and cell membranes. J Lipid Res 2020;61:676-86. DOI PubMed PMC
81. Dell’Agli M, Canavesi M, Galli G, Bellosta S. Dietary polyphenols and regulation of gelatinase expression and activity. Thromb
Haemost 2005;93:751-60. DOI PubMed
82. Coleman DT, Bigelow R, Cardelli JA. Inhibition of fatty acid synthase by luteolin post-transcriptionally down-regulates c-Met
expression independent of proteosomal/lysosomal degradation. Mol Cancer Ther 2009;8:214-24. DOI PubMed PMC
83. Duhon D, Bigelow RL, Coleman DT, et al. The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-
Met receptor in prostate cancer cells. Mol Carcinog 2010;49:739-49. DOI PubMed