Page 36 - Read Online
P. 36

Merhi et al. J Cancer Metastasis Treat 2021;7:42  https://dx.doi.org/10.20517/2394-4722.2021.80  Page 15 of 16

               51.       Bouchet S, Tang R, Fava F, Legrand O, Bauvois B. The CNGRC-GG-D(KLAKLAK)2 peptide induces a caspase-independent, Ca2+-
                    dependent death in human leukemic myeloid cells by targeting surface aminopeptidase N/CD13. Oncotarget 2016;7:19445-67.  DOI
                    PubMed  PMC
               52.       Bauvois B, Dumont J, Mathiot C, Kolb JP. Production of matrix metalloproteinase-9 in early stage B-CLL: suppression by
                    interferons. Leukemia 2002;16:791-8.  DOI  PubMed
               53.       Bauvois B, Pramil E, Jondreville L, et al. Relation of neutrophil gelatinase-associated lipocalin overexpression to the resistance to
                    apoptosis of tumor B cells in chronic lymphocytic leukemia. Cancers (Basel) 2020;12:2124.  DOI  PubMed  PMC
               54.       Trocme C, Gaudin P, Berthier S, Barro C, Zaoui P, Morel F. Human B lymphocytes synthesize the 92-kDa gelatinase, matrix
                    metalloproteinase-9. J Biol Chem 1998;273:20677-84.  DOI  PubMed
               55.       Munaut C, Noel A, Hougrand O, Foidart JM, Boniver J, Deprez M. Vascular endothelial growth factor expression correlates with
                    matrix metalloproteinases MT1-MMP, MMP-2 and MMP-9 in human glioblastomas. Int J Cancer 2003;106:848-55.  DOI  PubMed
               56.       Bauvois B, Pramil E, Jondreville L, Quiney C, Nguyen-Khac F, Susin SA. Activation of interferon signaling in chronic lymphocytic
                    leukemia cells contributes to apoptosis resistance via a JAK-Src/STAT3/Mcl-1 signaling pathway. Biomedicines 2021;9:188.  DOI
                    PubMed  PMC
               57.       Wang ZB, Liu YQ, Cui YF. Pathways to caspase activation. Cell Biol Int 2005;29:489-96.  DOI  PubMed
               58.       Paupert J, Mansat-De Mas V, Demur C, Salles B, Muller C. Cell-surface MMP-9 regulates the invasive capacity of leukemia blast
                    cells with monocytic features. Cell Cycle 2008;7:1047-53.  DOI  PubMed
               59.       Toth M, Gervasi DC, Fridman R. Phorbol ester-induced cell surface association of matrix metalloproteinase-9 in human MCF10A
                    breast epithelial cells. Cancer Res 1997;57:3159-67.  PubMed
               60.       Ogata  Y,  Enghild  JJ,  Nagase  H.  Matrix  metalloproteinase  3  (stromelysin)  activates  the  precursor  for  the  human  matrix
                    metalloproteinase 9. J Biol Chem 1992;267:3581-4.  PubMed
               61.       Knäuper V, Smith B, López-Otin C, Murphy G. Activation of progelatinase B (proMMP-9) by active collagenase-3 (MMP-13). Eur J
                    Biochem 1997;248:369-73.  DOI  PubMed
               62.       Aggarwal BB, Kunnumakkara AB, Harikumar KB, et al. Signal transducer and activator of transcription-3, inflammation, and cancer:
                    how intimate is the relationship? Ann N Y Acad Sci 2009;1171:59-76.  DOI  PubMed  PMC
               63.       Tolomeo M, Cascio A. The multifaced role of STAT3 in cancer and its implication for anticancer therapy. Int J Mol Sci 2021;22:603.
                    DOI  PubMed  PMC
               64.       Vandooren J, Van den Steen PE, Opdenakker G. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9
                    (MMP-9): the next decade. Crit Rev Biochem Mol Biol 2013;48:222-72.  DOI  PubMed
               65.       Choueiri TK, Kaelin WG, Jr. Targeting the HIF2-VEGF axis in renal cell carcinoma. Nat Med 2020;26:1519-30.  DOI  PubMed
               66.       Aref S, Osman E, Mansy S, et al. Prognostic relevance of circulating matrix metalloproteinase-2 in acute myeloid leukaemia patients.
                    Hematol Oncol 2007;25:121-6.  DOI  PubMed
               67.       Martelli AM, Nyåkern M, Tabellini G, et al. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for
                    human acute myeloid leukemia. Leukemia 2006;20:911-28.  DOI  PubMed
               68.       Dona M, Dell’Aica I, Pezzato E, et al. Hyperforin inhibits cancer invasion and metastasis. Cancer Res 2004;64:6225-32.  DOI
                    PubMed
               69.       Kampen KR, Ter Elst A, de Bont ES. Vascular endothelial growth factor signaling in acute myeloid leukemia. Cell Mol Life Sci
                    2013;70:1307-17.  DOI  PubMed
               70.       Wiszniak S, Schwarz Q. Exploring the intracrine functions of VEGF-A. Biomolecules 2021;11:128.  DOI  PubMed  PMC
               71.       Redondo-Munoz J, Ugarte-Berzal E, Terol MJ, et al. Matrix metalloproteinase-9 promotes chronic lymphocytic leukemia b cell
                    survival through its hemopexin domain. Cancer Cell 2010;17:160-72.  DOI  PubMed
               72.       Stefanidakis M, Karjalainen K, Jaalouk DE, et al. Role of leukemia cell invadosome in extramedullary infiltration. Blood
                    2009;114:3008-17.  DOI  PubMed  PMC
               73.       Kortlepel K, Bendall LJ, Gottlieb DJ. Human acute myeloid leukaemia cells express adhesion proteins and bind to bone marrow
                    fibroblast monolayers and extracellular matrix proteins. Leukemia 1993;7:1174-9.  PubMed
               74.       Sell TS, Belkacemi T, Flockerzi V, Beck A. Protonophore properties of hyperforin are essential for its pharmacological activity. Sci
                    Rep 2014;4:7500.  DOI  PubMed  PMC
               75.       Mollinedo F, Gajate C. Lipid rafts as major platforms for signaling regulation in cancer. Adv Biol Regul 2015;57:130-46.  DOI
                    PubMed
               76.       George KS, Wu S. Lipid raft: a floating island of death or survival. Toxicol Appl Pharmacol 2012;259:311-9.  DOI  PubMed  PMC
               77.       Nichols B. Caveosomes and endocytosis of lipid rafts. J Cell Sci 2003;116:4707-14.  DOI  PubMed
               78.       Salaün C, James DJ, Chamberlain LH. Lipid rafts and the regulation of exocytosis. Traffic 2004;5:255-64.  DOI  PubMed  PMC
               79.       Hanzal-Bayer MF, Hancock JF. Lipid rafts and membrane traffic. FEBS Lett 2007;581:2098-104.  DOI  PubMed
               80.       Ouweneel AB, Thomas MJ, Sorci-Thomas MG. The ins and outs of lipid rafts: functions in intracellular cholesterol homeostasis,
                    microparticles, and cell membranes. J Lipid Res 2020;61:676-86.  DOI  PubMed  PMC
               81.       Dell’Agli M, Canavesi M, Galli G, Bellosta S. Dietary polyphenols and regulation of gelatinase expression and activity. Thromb
                    Haemost 2005;93:751-60.  DOI  PubMed
               82.       Coleman DT, Bigelow R, Cardelli JA. Inhibition of fatty acid synthase by luteolin post-transcriptionally down-regulates c-Met
                    expression independent of proteosomal/lysosomal degradation. Mol Cancer Ther 2009;8:214-24.  DOI  PubMed  PMC
               83.       Duhon D, Bigelow RL, Coleman DT, et al. The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-
                    Met receptor in prostate cancer cells. Mol Carcinog 2010;49:739-49.  DOI  PubMed
   31   32   33   34   35   36   37   38   39   40   41