Page 96 - Read Online
P. 96

Page 18 of 19        Corn et al. J Cancer Metastasis Treat 2021;7:41  https://dx.doi.org/10.20517/2394-4722.2021.63

               95.       Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 2005;12:245-62.  DOI  PubMed
               96.       Elisei R, Ugolini C, Viola D, et al. BRAF(V600E) mutation and outcome of patients with papillary thyroid carcinoma: a 15-year
                    median follow-up study. J Clin Endocrinol Metab 2008;93:3943-9.  DOI  PubMed
               97.       Tufano RP, Teixeira GV, Bishop J, Carson KA, Xing M. BRAF mutation in papillary thyroid cancer and its value in tailoring initial
                    treatment: a systematic review and meta-analysis. Medicine (Baltimore) 2012;91:274-86.  DOI  PubMed
               98.       Cuccurullo V, Di Stasio GD, Cascini GL. PET/CT in thyroid cancer - the importance of BRAF mutations. Nucl Med Rev Cent East
                    Eur 2020;23:97-102.  DOI  PubMed
               99.       Pak K, Suh S, Kim SJ, Kim IJ. Prognostic value of genetic mutations in thyroid cancer: a meta-analysis. Thyroid 2015;25:63-70.
                    DOI  PubMed
               100.      Wang F, Zhao S, Shen X, et al. BRAF V600E confers male sex disease-specific mortality risk in patients with papillary thyroid
                    cancer. J Clin Oncol 2018;36:2787-95.  DOI  PubMed  PMC
               101.      Shen X, Zhu G, Liu R, et al. Patient age-associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer.
                    J Clin Oncol 2018;36:438-45.  DOI  PubMed  PMC
               102.      Durante C, Puxeddu E, Ferretti E, et al. BRAF mutations in papillary thyroid carcinomas inhibit genes involved in iodine metabolism.
                    J Clin Endocrinol Metab 2007;92:2840-3.  DOI  PubMed
                                                           18                                  V600E
               103.      Chang JW, Park KW, Heo JH, et al. Relationship between  F-fluorodeoxyglucose accumulation and the BRAF   mutation in
                    papillary thyroid cancer. World J Surg 2018;42:114-22.  DOI  PubMed
               104.      Choi EK, Chong A, Ha JM, Jung CK, O JH, Kim SH. Clinicopathological characteristics including BRAF V600E mutation status and
                    PET/CT findings in papillary thyroid carcinoma. Clin Endocrinol (Oxf) 2017;87:73-9.  DOI  PubMed
               105.      Morani F, Pagano L, Prodam F, Aimaretti G, Isidoro C. Loss of expression of the oncosuppressor PTEN in thyroid incidentalomas
                    associates with GLUT1 plasmamembrane expression. Panminerva Med 2012;54:59-63.  PubMed
               106.      Morani F, Phadngam S, Follo C, et al. PTEN regulates plasma membrane expression of glucose transporter 1 and glucose uptake in
                    thyroid cancer cells. J Mol Endocrinol 2014;53:247-58.  DOI  PubMed
               107.      Samih N, Hovsepian S, Aouani A, Lombardo D, Fayet G. Glut-1 translocation in FRTL-5 thyroid cells: role of phosphatidylinositol
                    3-kinase and N-glycosylation. Endocrinology 2000;141:4146-55.  DOI  PubMed
               108.      Matsuzu K, Segade F, Wong M, Clark OH, Perrier ND, Bowden DW. Glucose transporters in the thyroid. Thyroid 2005;15:545-50.
                    DOI  PubMed
               109.      Matsuzu K, Segade F, Matsuzu U, Carter A, Bowden DW, Perrier ND. Differential expression of glucose transporters in normal and
                    pathologic thyroid tissue. Thyroid 2004;14:806-12.  DOI  PubMed
               110.      Kim BH, Kim IJ, Kim SS, Kim SJ, Lee CH, Kim YK. Relationship between biological marker expression and fluorine-18
                    fluorodeoxyglucose uptake in incidentally detected thyroid cancer. Cancer Biother Radiopharm 2010;25:309-15.  DOI  PubMed
               111.      Ohba K, Sasaki S, Oki Y, et al. Factors associated with fluorine-18-fluorodeoxyglucose uptake in benign thyroid nodules. Endocr J
                    2013;60:985-90.  DOI  PubMed
               112.      Olivier M, Eeles R, Hollstein M, Khan MA, Harris CC, Hainaut P. The IARC TP53 database: new online mutation analysis and
                    recommendations to users. Hum Mutat 2002;19:607-14.  DOI  PubMed
               113.      Ghanem M, Levy Y, Mazeh H. Preoperative diagnosis of benign thyroid nodules with intermediate cytology. Gland Surg 2012;1:89-
                    91.  DOI  PubMed  PMC
               114.      Alexander EK, Schorr M, Klopper J, et al. Multicenter clinical experience with the afirma gene expression classifier. J Clin
                    Endocrinol Metab 2014;99:119-25.  DOI  PubMed
               115.      Nikiforov YE, Carty SE, Chiosea SI, et al. Impact of the multi-gene ThyroSeq next-generation sequencing assay on cancer diagnosis
                    in thyroid nodules with atypia of undetermined significance/follicular lesion of undetermined significance cytology. Thyroid
                    2015;25:1217-23.  DOI  PubMed  PMC
               116.      Steward DL, Carty SE, Sippel RS, et al. Performance of a multigene genomic classifier in thyroid nodules with indeterminate
                    cytology: a prospective blinded multicenter study. JAMA Oncol 2019;5:204-12.  DOI  PubMed  PMC
               117.      Labourier E, Shifrin A, Busseniers AE, et al. Molecular testing for miRNA, mRNA, and DNA on fine-needle aspiration improves the
                    preoperative diagnosis of thyroid nodules with indeterminate cytology. J Clin Endocrinol Metab 2015;100:2743-50.  DOI  PubMed
                    PMC
                                                                                                       18
               118.      Endo  M,  Sipos  JA,  Ringel  MD,  et  al.  Prevalence  of  cancer  and  the  benign  call  rate  of  afirma  gene  classifier  in  F-
                    Fluorodeoxyglucose positron emission tomography positive cytologically indeterminate thyroid nodules. Cancer Med 2021;10:1084-
                    90.  DOI  PubMed  PMC
               119.      Haugen BR, Alexander EK, Bible KC, et al. 2015 American thyroid association management guidelines for adult patients with
                    thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and
                    differentiated thyroid cancer. Thyroid 2016;26:1-133.  DOI  PubMed  PMC
               120.      N  C C N     C l i n i c a l    p r a c t i c e    g u i d e l i n e s    i n    o n c o l o g y :    t h y r o i d    c a r c i n o m  a    2 0 2 0 .    A  v a i l a b l e    f r o m  :
                    https://www.nccn.org/professionals/physician_gls/pdf/thyroid.pdf [Last accessed on 3 Aug 2021].
               121.      Amin F, Byrd DR, Brookland PK, et al. AJCC cancer staging manual. 8th ed. New York: Springer International Publishing, 2017.
               122.      Ito Y, Miyauchi A, Oda H. Low-risk papillary microcarcinoma of the thyroid: a review of active surveillance trials. Eur J Surg Oncol
                    2018;44:307-15.  DOI  PubMed
               123.      Nguyen XV, Job J, Fiorillo LE, Sipos J. Thyroid incidentalomas: practice considerations for radiologists in the age of incidental
                    findings. Radiol Clin North Am 2020;58:1019-31.  DOI  PubMed
               124.      Mazzaferri EL. Long-term outcome of patients with differentiated thyroid carcinoma: effect of therapy. Endocr Pract 2000;6:469-76.
   91   92   93   94   95   96   97   98   99   100   101