Page 18 - Read Online
P. 18

Page 14 of 16                         Nagayama. J Cancer Metastasis Treat 2021;7:6  I  http://dx.doi.org/10.20517/2394-4722.2020.114

               37.  Strohecker AM, Guo JY, Karsli-Uzunbas G, et al. Autophagy sustains mitochondrial glutamine metabolism and growth of BrafV600E-
                   driven lung tumors. Cancer Discov 2013;3:1272-85.
               38.  Karsli-Uzunbas G, Guo JY, Price S, et al. Autophagy is required for glucose homeostasis and lung tumor maintenance. Cancer Discov
                   2014;4:914-27.
               39.  Rosenfeldt MT, O’Prey J, Morton JP, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature
                   2013;504:296-300.
               40.  Iacobuzio-Donahue CA, Herman JM. Autophagy, p53, and pancreatic cancer. N Engl J Med 2014;370:1352-3.
               41.  Lock R, Roy S, Kenific CM, et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell
                   2011;22:165-78.
               42.  Bae H, Guan JL. Suppression of autophagy by FIP200 deletion impairs DNA damage repair and increases cell death upon treatments with
                   anticancer agents. Mol Cancer Res 2011;9:1232-41.
               43.  Gillespie DA, Ryan KM. Autophagy is critically required for DNA repair by homologous recombination. Mol Cell Oncol
                   2016;3:e1030538.
               44.  Yu WF, Ni Y, Saji M, Ringel MD, Jaini R, Eng C. Cowden syndrome-associated germline succinate dehydrogenase complex subunit D
                   (SDHD) variants cause PTEN-mediated down-regulation of autophagy in thyroid cancer cells. Hum Mol Genet 2017;26:1365-75.
               45.  Plantinga TS, van de Vosse E, Huijbers A, et al. Role of genetic variants of autophagy genes in susceptibility for non-medullary thyroid
                   cancer and patients outcome. PLoS One 2014;9:e94086.
               46.  Huijbers A, Plantinga TS, Joosten LA, et al. The effect of the ATG16L1 Thr300Ala polymorphism on susceptibility and outcome of
                   patients with epithelial cell-derived thyroid carcinoma. Endocr Relat Cancer 2012;19:L15-8.
               47.  Mussazhanova Z, Shimamura M, Kurashige T, Ito M, Nakashima M, Nagayama Y. Causative role for defective expression of
                   mitochondria-eating protein in accumulation of mitochondria in thyroid oncocytic cell tumors. Cancer Sci 2020;111:2814-23.
               48.  Miyamoto Y, Kitamura N, Nakamura Y, Futamura M, Miyamoto T, et al. Possible existence of lysosome-like organella within
                   mitochondria and its role in mitochondrial quality control. PLoS One 2011;6:e16054.
               49.  Bonora E, Evangelisti C, Bonichon F, Tallini G, Romeo G. Novel germline variants identified in the inner mitochondrial membrane
                   transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas. Br J Cancer 2006;95:1529-36.
               50.  Lee J, Ham S, Lee MH, Kim SJ, Park JH, et al. Dysregulation of Parkin-mediated mitophagy in thyroid Hurthle cell tumors.
                   Carcinogenesis 2015;36:1407-18
               51.  Ganly I, Makarov V, Deraje S, Dong Y, Reznik E, et al. Integrated genomic analysis of Hurthle cell cancer reveals oncogenic drivers,
                   recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell 2018;34:256-70.e5.
               52.  Zhang N, Li LC, Wang J, et al. Study of autophagy-related protein light chain 3 (LC3)-II expression levels in thyroid diseases. Biomed
                   Pharmacother 2015;69:306-10.
               53.  Jiang NN, Yang Y, Zhao GN, et al. Knockout of ASAP1 induces autophagy in papillary thyroid carcinoma by inhibiting the mTOR
                   signaling pathway. Pathol Res Pract 2020;216:152950.
               54.  Plantinga TS, Tesselaar MH, Morreau H, et al. Autophagy activity is associated with membranous sodium iodide symporter expression
                   and clinical response to radioiodine therapy in non-medullary thyroid cancer. Autophagy 2016;12:1195-205.
               55.  Kinsey CG, Camolotto SA, Boespflug AM, et al. Protective autophagy elicited by RAF-->MEK-->ERK inhibition suggests a treatment
                   strategy for RAS-driven cancers. Nat Med 2019;25:620-7.
               56.  Faustino A, Couto JP, Pópulo H, et al. mTOR pathway overactivation in BRAF mutated papillary thyroid carcinoma. J Clin Endocrinol
                   Metab 2012;97:E1139-49.
               57.  Morani F, Titone R, Pagano L, et al. Autophagy and thyroid carcinogenesis: genetic and epigenetic links. Endocr Relat Cancer
                   2014;21:R13-29.
               58.  Wang Y, Guo QH, Zhao Y, et al. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in
                   papillary thyroid carcinoma. Oncol Lett 2014;8:1947-52.
               59.  Corazzari M, Rapino F, Ciccosanti F, et al. Oncogenic BRAF induces chronic ER stress condition resulting in increased basal autophagy
                   and apoptotic resistance of cutaneous melanoma. Cell Death Differ 2015;22:946-58.
               60.  Liu YL, Lai F, Wilmott JS, et al. Noxa upregulation by oncogenic activation of MEK/ERK through CREB promotes autophagy in human
                   melanoma cells. Oncotarget 2014;5:11237-51.
               61.  Kim HM, Kim ES, Koo JS. Expression of autophagy-related proteins in different types of thyroid cancer. Int J Mol Sci 2017;18.
               62.  Li X, Xu H, Ma H. Beclin 1 is highly expressed in papillary thyroid carcinoma and correlates with lymph node metastasis. Acta Chir Belg
                   2013;113:175-81.
               63.  Song HJ, Chen XY, Jiao Q, et al. HIF-1α-mediated TERT activation inducing autophagy through mTOR promotes papillary thyroid
                   carcinoma progression during hypoxia stress. Thyroid 2020.
               64.  Hu G, Feng HF, Zhan H. Identification of an autophagy-related signature predicting overall survival for papillary thyroid carcinoma. Dose
                   Response 2020;18:1559325819899265.
               65.  Zhu HW, Qu YQ. Expression levels of ARHI and Beclin1 in thyroid cancer and their relationship with clinical pathology and prognosis.
                   Oncol Lett 2020;19:1241-6.
               66.  Zhang DX, Xu XN, Li JJ, et al. High iodine effects on the proliferation, apoptosis, and migration of papillary thyroid carcinoma cells as a
                   result of autophagy induced by BRAF kinase. Biomed Pharmacother 2019;120:109476.
               67.  Hong Z, Xin X, Ying C, et al. Chaperone-mediated autophagy governs progression of papillary thyroid carcinoma via PPARγ-SDF1/
                   CXCR4 signaling. J Clin Endocrinol Metab 2020;105:dgaa366.
   13   14   15   16   17   18   19   20   21   22   23