Page 69 - Read Online
P. 69
Dave et al. J Cancer Metastasis Treat 2020;6:46 I http://dx.doi.org/10.20517/2394-4722.2020.106 Page 31 of 36
110. Bahadoran Z, Tohidi M, Nazeri P, Mehran M, Azizi F, Mirmiran P. Effect of broccoli sprouts on insulin resistance in type 2 diabetic
patients: a randomized double-blind clinical trial. Int J Food Sci Nutr 2012;63:767-71.
111. Axelsson AS, Tubbs E, Mecham B, et al. Sulforaphane reduces hepatic glucose production and improves glucose control in patients with
type 2 diabetes. Sci Transl Med 2017;9:eaah4477.
112. Murashima M, Watanabe S, Zhuo XG, Uehara M, Kurashige A. Phase 1 study of multiple biomarkers for metabolism and oxidative stress
after one-week intake of broccoli sprouts. Biofactors 2004;22:271-5.
113. Mazarakis N, Snibson K, Licciardi PV, Karagiannis TC. The potential use of l-sulforaphane for the treatment of chronic inflammatory
diseases: a review of the clinical evidence. Clin Nutr 2020;39:664-75.
114. Liu H, Talalay P. Relevance of anti-inflammatory and antioxidant activities of exemestane and synergism with sulforaphane for disease
prevention. Proc Natl Acad Sci U S A 2013;110:19065-70.
115. Clarke JD, Hsu A, Yu Z, Dashwood RH, Ho E. Differential effects of sulforaphane on histone deacetylases, cell cycle arrest and apoptosis
in normal prostate cells versus hyperplastic and cancerous prostate cells. Mol Nutr Food Res 2011;55:999-1009.
116. Cornblatt BS, Ye L, Dinkova-Kostova AT, et al. Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast.
Carcinogenesis 2007;28:1485-90.
117. Carpenter CL, Yu MC, London SJ. Dietary isothiocyanates, glutathione S-transferase M1 (GSTM1), and lung cancer risk in African
Americans and Caucasians from Los Angeles County, California. Nutr Cancer 2009;61:492-9.
118. Wu QJ, Xie L, Zheng W, et al. Cruciferous vegetables consumption and the risk of female lung cancer: a prospective study and a meta-
analysis. Ann Oncol 2013;24:1918-24.
119. Li QQ, Xie YK, Wu Y, et al. Sulforaphane inhibits cancer stem-like cell properties and cisplatin resistance through miR-214-mediated
downregulation of c-MYC in non-small cell lung cancer. Oncotarget 2017;8:12067-80.
120. Juge N, Mithen RF, Traka M. Molecular basis for chemoprevention by sulforaphane: a comprehensive review. Cell Mol Life Sci
2007;64:1105-27.
121. Jin W, Wang H, Ji Y, et al. Genetic ablation of Nrf2 enhances susceptibility to acute lung injury after traumatic brain injury in mice. Exp
Biol Med (Maywood) 2009;234:181-9.
122. Kong X, Thimmulappa R, Kombairaju P, Biswal S. NADPH oxidase-dependent reactive oxygen species mediate amplified TLR4
signaling and sepsis-induced mortality in Nrf2-deficient mice. J Immunol 2010;185:569-77.
123. Dinkova-Kostova AT, Fahey JW, Kostov RV, Kensler TW. KEAP1 and done? Targeting the NRF2 Pathway with sulforaphane. Trends
Food Sci Technol 2017;69:257-69.
124. Thimmulappa RK, Mai KH, Srisuma S, Kensler TW, Yamamoto M, Biswal S. Identification of Nrf2-regulated genes induced by the
chemopreventive agent sulforaphane by oligonucleotide microarray. Cancer Res 2002;62:5196-203.
125. Alao JP. The regulation of cyclin D1 degradation: roles in cancer development and the potential for therapeutic invention. Mol Cancer
2007;6:24.
126. Żuryń A, Litwiniec A, Safiejko-Mroczka B, et al. The effect of sulforaphane on the cell cycle, apoptosis and expression of cyclin D1 and
p21 in the A549 non-small cell lung cancer cell line. Int J Oncol 2016;48:2521-33.
127. Wang L, Liu D, Ahmed T, Chung FL, Conaway C, Chiao JW. Targeting cell cycle machinery as a molecular mechanism of sulforaphane
in prostate cancer prevention. Int J Oncol 2004;24:187-92.
128. Hu R, Khor TO, Shen G, et al. Cancer chemoprevention of intestinal polyposis in ApcMin/+ mice by sulforaphane, a natural product
derived from cruciferous vegetable. Carcinogenesis 2006;27:2038-46.
129. Ho E, Clarke JD, Dashwood RH. Dietary sulforaphane, a histone deacetylase inhibitor for cancer prevention. J Nutr 2009;139:2393-6.
130. Myzak MC, Hardin K, Wang R, Dashwood RH, Ho E. Sulforaphane inhibits histone deacetylase activity in BPH-1, LnCaP and PC-3
prostate epithelial cells. Carcinogenesis 2006;27:811-9.
131. Jiang LL, Zhou SJ, Zhang XM, Chen HQ, Liu W. Sulforaphane suppresses in vitro and in vivo lung tumorigenesis through
downregulation of HDAC activity. Biomed Pharmacother 2016;78:74-80.
132. Myzak MC, Tong P, Dashwood WM, Dashwood RH, Ho E. Sulforaphane retards the growth of human PC-3 xenografts and inhibits
HDAC activity in human subjects. Exp Biol Med (Maywood) 2007;232:227-34.
133. Juengel E, Erb HHH, Haferkamp A, Rutz J, Chun FK, Blaheta RA. Relevance of the natural HDAC inhibitor sulforaphane as a
chemopreventive agent in urologic tumors. Cancer Lett 2018;435:121-6.
134. Alumkal JJ, Slottke R, Schwartzman J, et al. A phase II study of sulforaphane-rich broccoli sprout extracts in men with recurrent prostate
cancer. Invest New Drugs 2015;33:480-9.
135. Cipolla BG, Mandron E, Lefort JM, et al. Effect of Sulforaphane in Men with Biochemical Recurrence after Radical Prostatectomy.
Cancer Prev Res (Phila) 2015;8:712-9.
136. Bunea A, Rugină D, Sconţa Z, et al. Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and
apoptotic properties in B16-F10 metastatic murine melanoma cells. Phytochemistry 2013;95:436-44.
137. Konczak I, Zhang W. Anthocyanins-more than nature's colours. J Biomed Biotechnol 2004;2004:239-40.
138. Kong JM, Chia LS, Goh NK, Chia TF, Brouillard R. Analysis and biological activities of anthocyanins. Phytochemistry 2003;64:923-33.
139. Hou DX, Kai K, Li JJ, et al. Anthocyanidins inhibit activator protein 1 activity and cell transformation: structure-activity relationship and
molecular mechanisms. Carcinogenesis 2004;25:29-36.
140. Xu M, Bower KA, Wang S, et al. Cyanidin-3-glucoside inhibits ethanol-induced invasion of breast cancer cells overexpressing ErbB2.
Mol Cancer 2010;9:285.
141. Dong Z, Birrer MJ, Watts RG, Matrisian LM, Colburn NH. Blocking of tumor promoter-induced AP-1 activity inhibits induced