Page 20 - Read Online
P. 20
Yeger et al. J Cancer Metastasis Treat 2020;6:26 I http://dx.doi.org/10.20517/2394-4722.2020.61 Page 15 of 16
76. Jaman MS, Sayeed MA. Ellagic acid, sulforaphane, and ursolic acid in the prevention and therapy of breast cancer: current evidence and
future perspectives. Breast Cancer 2018;25:517-28.
77. Agathokleous E, Calabrese EJ. Hormesis: the dose response for the 21st century: the future has arrived. Toxicology 2019;425:152249.
78. Calabrese EJ, Agathokleous E. Building biological shields via hormesis. Trends Pharmacol Sci 2019;40:8-10.
79. Li X, Yang T, Sun Z. Hormesis in health and chronic diseases. Trends Endocrinol Metab 2019;30:944-58.
80. Jodynis-Liebert J, Kujawska M. Biphasic dose-response induced by phytochemicals: experimental evidence. J Clin Med 2020;9:718.
81. Lee YM, Lee DH. Mitochondrial toxins and healthy lifestyle meet at the crossroad of hormesis. Diabetes Metab J 2019;43:568-77.
82. Klaus S, Ost M. Mitochondrial uncoupling and longevity - A role for mitokines? Exp Gerontol 2020;130:110796.
83. Kenny TC, Craig AJ, Villanueva A, Germain D. Mitohormesis primes tumor invasion and metastasis. Cell Rep 2019;27:2292-303.
84. Zelenka J, Koncošová M, Ruml T. Targeting of stress response pathways in the prevention and treatment of cancer. Biotechnol Adv
2018;36:583-602.
85. Tsoupras A, Lordan R, Zabetakis I. Inflammation, not cholesterol, is a cause of chronic disease. Nutrients 2018;10:604.
86. Pein M, Insua-Rodríguez J, Hongu T, Riedel A, Meier J, et al. Metastasis-initiating cells induce and exploit a fibroblast niche to fuel
malignant colonization of the lungs. Nat Commun 2020;11:1494.
87. Beckwith JB, Kiviat NB, Bonadio JF. Nephrogenic rests, nephroblastomatosis, and the pathogenesis of Wilms’ tumor. Pediat Pathol
1990;10:1-36.
88. Coorens THH, Treger TD, Al-Saadi R, Moore L, Tran MGB, et al. Embryonal precursrs of Wilms tumor. Science 2019;366:1247-51.
89. Thomas ET, Del Mar C, Glasziou P, Wright G, Barratt A, et al. Prevalence of incidental breast cancer and precursor lesions in autopsy
studies: a systematic review and meta-analysis. BMC Cancer 2017;17:808.
90. Zill OA, Banks KC, Fairclough SR, Mortimer SA, Vowles JV, et al. The landscape of actionable genomic alterations in cell-free
circulating tumor DNA from 21,807 advanced cancer patients. Clin Cancer Res 2018;24:3528-38.
91. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, et al. A framework for advancing our understanding of cancer- associated
fibroblasts. Nature Rev Cancer 2020;20:174-86.
92. Monteran L, Erez N. The dark side of fibroblasts: cancer-associated fibroblasts as mediators of immunosuppression in the tumor
microenvironment. Front Immunol 2019;10:1835.
93. Rothlin, CV, Ghosh S. Lifting the innate immune barriers to antitumor immunity. J Immunother Cancer 2020;8:e000695.
94. Sturm C, Wagner AE. Brassica-derived plant bioactives as modulators of chemopreventive and inflammatory signaling pathways. Int J
Mol Sci 2017;18:1890.
95. Liang J, Jahraus B, Balta E, Ziegler JD, Hübner K, et al. Sulforaphane inhibits inflammatory responses of primary human t-cells by
increasing ROS and depleting glutathione. Front Immunol 2018;9:2584.
96. Burčul F, Generalić Mekinić I, Radan M, Rollin P, Blažević I. Isothiocyanates: cholinesterase inhibiting, antioxidant, and anti-
inflammatory activity. J Enzyme Inhib Med Chem 2018;33:577-82.
97. Yoo IH, Kim MJ, Kim J, Sung JJ, Park ST, et al. The anti-inflammatory effect of sulforaphane in mice with experimental autoimmune
encephalomyelitis. J Korean Med Sci 2019;34:e197.
98. Wang Y, Lu J, Jiang B, Guo J. The roles of curcumin in regulating the tumor immunosuppressive microenvironment. Oncol Lett
2020;19:3059-70.
99. Marrazzo P, Angeloni C, Hrelia S. Combined treatment with three natural antioxidants enhances neuroprotection in a SH-SY5Y 3D
culture model. Antioxidants (Basel) 2019;8:420.
100. Grafetstätter M, Pletsch-Borba L, Sookthai D, Karavasiloglou N, Johnson T, et al. Thrombomodulin and thrombopoietin, two biomarkers
of hemostasis, are positively associated with adherence to the world cancer research fund/american institute for cancer research
recommendations for cancer prevention in a population-based cross-sectional study. Nutrients 2019;11:2067.
101. Uppal S, Kaur K, Kumar R, Kaur ND, Shukla G, et al. Chitosan nanoparticles as a biocompatible and efficient nanowagon for benzyl
isothiocyanate. Int J Biol Macromol 2018;115:18-28.
102. Nasery M, Abadi B, Poormoghadam D, Zarrabi A, Keyhanvar P, et al. Curcumin delivery mediated by bio-based nanoparticles: a review.
Molecules 2020;25:689.
103. Liu P, Behray M, Wang Q, Wang W, Zhou Z, et al. Anti-cancer activities of allyl isothiocyanate and its conjugated silicon quantum dots.
Sci Rep 2018;8:1084.
104. Lane AN, Higashi RM, Fan TW. Metabolic reprogramming in tumors: contributions of the tumor microenvironment. Genes Dis
2020;7:185-98.
105. Piskovatska V, Stefanyshyn N, Storey KB, Vaiserman AM, Lushchak O. Metformin as a geroprotector: experimental and clinical
evidence. Biogerontology 2019;20:33-48.
106. Kwon Y. Food-derived polyphenols inhibit the growth of ovarian cancer cells irrespective of their ability to induce antioxidant responses.
Heliyon 2018;4:e00753.
107. Lăcătușu CM, Grigorescu ED, Floria M, Onofriescu A, Mihai BM. The mediterranean diet: From an environment-driven food culture to
an emerging medical prescription. Int J Environ Res Public Health 2019;16:942.
108. D’Innocenzo S, Biagi C, Lanari M. Obesity and the mediterranean diet: a review of evidence of the role and sustainability of the
mediterranean diet. Nutrients 2019;11:1306.
109. Uusitupa M, Khan TA, Viguiliouk E, Kahleova H, Rivellese AA, et al. Prevention of type 2 diabetes by lifestyle changes: a systematic
review and meta-analysis. Nutrients 2019;11:2611.
110. Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules