Page 52 - Read Online
P. 52
Page 14 of 15 Girotti et al. J Cancer Metastasis Treat 2020;6:52 I http://dx.doi.org/10.20517/2394-4722.2020.107
17. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994;298:249-58.
18. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J 2001;357:593-615.
19. Lechner M, Lirk P, Rieder J. Inducible nitric oxide synthase (iNOS) in tumor biology: two sides of the same coin. Sem Cancer biol
2005;5:277-89.
20. Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol 2015;6:334-3.
21. Kamm A, Przychodzen P, Kuban-Jankowska A, et al. Nitric oxide and its derivatives in the cancer battlefield. Nitric Oxide 2019;93:102-14.
22. Thomas DD, Ridnour LA, Isenberg JS, et al. The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Biol Med
2008;45:18-31.
23. Heinrich TA, da Silva RS, Miranda KM, Switzer CH, Wink DA, Fukuto JM. Biological nitric oxide signaling: chemistry and terminology.
Br J Pharmacol 2013;169:1417-29.
24. Jahani-Asi A, Bonni A. iNOS: a potential therapeutic target for malignant glioma. Curr Mol Med 2013;13:1241-9.
25. Tran AN, Boyd NH, Walker K, Hjelmeland AB. NOS expression and NO function in glioma and implications for patient therapies. Antiox
Redox Signal 2017;26:986-99.
26. Foster HW, Hess DT, Stamler JS. Protein S-nitrosylation in health and disease: a current perspective. Trends Mol Med 2009;15:391-404.
27. Thomas DD, Jord’heuil D. S-nitrosation: current concepts and new developments. Antiox Redox Signal 2012;17:924-36.
28. Hogg, N, Broniowska KA. The chemical biology of S-nitrosothiols. Antiox Redox Signal 2012;17:969-80.
29. Fionda C, Abruzzese MP, Santoni A, Cippitelli M. Immunoregulatory and effector activities of nitric oxide and reactive nitrogen species
in cancer. Curr Med Chem 2016;23:2618-36.
30. Turchi JJ. Nitric oxide and cisplatin resistance: NO easy answers. Proc Natl Acad Aci USA 2006;103:4337-8.
31. Eyler CE, Wu QL, Yan K, et al. Glioma stem cell proliferation and tumor growth are promoted by nitric oxide synthase-2. Cell
2011;146:53-66.
32. Dougherty TJ, Gomer CJ, Henderson BW, et al. Photodynamic therapy. J Natl Cancer Inst 1998;90:889-905.
33. Agostinis P, Berg K, Cengel KA, et al. Photodynamic therapy of cancer: an update. CA Cancer j Clin 2011;61:250-81.
34. dos Santos AG, de Almeida DRQ, Ferreira L, Baptista MS, Labriola L. Photodynamic therapy in cancer treatment. J. Cancer Metastasis
Treat 2019;5:25.
35. Whelan HT. High-grade glioma/glioblastoma multiforme: is there a role for photodynamic therapy? J Natl Compr Canc Netw.
2012;1:S31-34.
36. Akimoto J. Photodynamic Therapy for Malignant Brain Tumors. Neurol Med Chir (Tokyo) 2016;56:151-7.
37. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 2003;22:7265-79.
38. Falk-Mahapatra R, Gollnick SO. Photodynamic therapy and immunity: an update. Photochem Photobiol 2020;96:550-9.
39. Kennedy JC, Pottier RH. Endogenous protoporphyrin IX, a clinically useful photosensitizer for photodynamic therapy. J. Photochem.
Photobiol B 1992;14:275-92.
40. Peng Q, Berg K, Moan J, Kongshaug M, Nesland JM. 5-Aminolevulinic acid-based photodynamic therapy: principles and experimental
research. Photochem. Photobiol 1997;65:235-51.
41. Mahmoudi K, Garvey KL, Bouras A, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J.
Neuro-Oncol 2019;141:595-607.
42. Stummer W, Stocker S, Novotny A, et al. In vitro and in vivo porphyrin accumulation in C6 glioma cells after exposure to
5-aminolevulinic acid. J Photochem Photobiol B 1998;45:160-9.
43. Colditz MJ, van Leyen K, Jeffree RL. Aminolevulinic acid (ALA)-protoporphyrin IX fluorescence guided tumour resection. Part 2:
theoretical, biochemical and practical aspects. J Clin Neurosci 2012;19:1611-6.
44. Yang X, Palasuberniam P, Kraus D, Chen B. Aminolevulinic acid-based tumor detection and therapy: molecular mechanisms and
strategies for enhancement. Int J Mol Sci 2015;16:25856-80.
45. Henderson BW, Sitnik-Busch TM, Vaughan LA. Potentiation of photodynamic therapy antitumor activity in mice by nitric oxide synthase
inhibitors is fluence rate-dependent Photochem. Photobiol 1999;70:64-71.
46. Korbelik M, Parking CS, Shibuya H, et al. Nitric oxide production by tumor tissue: impact on the response to photodynamic therapy. Br. J
Cancer 2000;82:1835-43.
47. Reeves KL, Reed MWR, Brown NJ. The role of nitric oxide in the treatment of tumors with aminolaevulinic acid-induced photodynamic
therapy. J. Photochem Photobiol B: Biology 2010;101:224-32.
48. Rapozzi V, Della Pietra E, Bonavida B. Dual roles of nitric oxide in the regulation of tumor cell response and resistance to photodynamic
therapy. Redox Biol 2015;6:311-7.
49. Casas A, Perotti H, Fukuda H, del C Battle AM. Photodynamic therapy of activated and resting lymphocytes and its antioxidant adaptive
response. Lasers Med Sci 2002;17:42-50.
50. Palasuberniam P, Yang X, Kraus D, Jones P, Myers KA, Chen B. ABCG2 transporter inhibitor restores the sensitivity to triple negative
breast cancer cells to aminolevulinic acid-mediated photodynamic therapy. Sci Rep 2015;5:13298.
51. Bhowmick R, Girotti AW. Signaling events in apoptotic photokilling of 5-aminolevulinic acid-treated tumor cells: inhibitory effects of
nitric oxide. Free Radic Biol Med 2009;47:731-40.
52. Bhowmick R, Girotti AW. Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic-based photodynamic
therapy. Free Radic Biol Med 2010;48:1296-301.
53. Bhowmick R, Girotti AW. Rapid upregulation of cytoprotective nitric oxide in breast tumor cels subjected to a photodynamic therapy-like
oxidative challenge. Photochem Photobiol 2011;87:378-86.