Page 37 - Read Online
P. 37

Heft Neal et al. J Cancer Metastasis Treat 2019;5:76  I  http://dx.doi.org/10.20517/2394-4722.2019.32                      Page 11 of 11

               60.  Manukian G, Bar-Ad V, Lu B, Argiris A, Johnson JM. Combining radiation and immune checkpoint blockade in the treatment of head and
                   neck squamous cell carcinoma. Front Oncol 2019;9:122.
               61.  Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer 2016;40:25-37.
               62.  Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, et al. Immunologic correlates of the abscopal effect in a patient with melanoma.
                   New Engl J Med 2012;366:925-31.
               63.  Jie HB, Schuler PJ, Lee SC, Srivastava RM, Argiris A, et al. CTLA-4(+) regulatory T cells increased in cetuximab-treated head and neck
                   cancer patients suppress NK cell cytotoxicity and correlate with poor prognosis. Cancer Res 2015;75:2200-10.
               64.  Concha-Benavente F, Srivastava RM, Trivedi S, Lei Y, Chandran U, et al. Identification of the cell-intrinsic and -extrinsic pathways
                   downstream of EGFR and IFNgamma that induce PD-L1 expression in head and neck cancer. Cancer Res 2016;76:1031-43.
               65.  Pahl JH, Ruslan SE, Buddingh EP, Santos SJ, Szuhai K, et al. Anti-EGFR antibody cetuximab enhances the cytolytic activity of natural
                   killer cells toward osteosarcoma. Clin Cancer Res 2012;18:432-41.
               66.  Lee J, Moon C. Current status of experimental therapeutics for head and neck cancer. Exp Biol Med 2011;236:375-89.
               67.  Roberti MP, Barrio MM, Bravo AI, Rocca YS, Arriaga JM, et al. IL-15 and IL-2 increase cetuximab-mediated cellular cytotoxicity against
                   triple negative breast cancer cell lines expressing EGFR. Breast Cancer Res Treat 2011;130:465-75.
               68.  Hsu YF, Ajona D, Corrales L, Lopez-Picazo JM, Gurpide A, et al. Complement activation mediates cetuximab inhibition of non-small cell
                   lung cancer tumor growth in vivo. Mol Cancer 2010;9:139.
               69.  Srivastava RM, Lee SC, Andrade Filho PA, Lord CA, Jie HB, et al. Cetuximab-activated natural killer and dendritic cells collaborate to
                   trigger tumor antigen-specific T-cell immunity in head and neck cancer patients. Clin Cancer Res 2013;19:1858-72.
               70.  Cohen EEW, Soulieres D, Le Tourneau C, Dinis J, Licitra L, et al. Pembrolizumab versus methotrexate, docetaxel, or cetuximab for
                   recurrent or metastatic head-and-neck squamous cell carcinoma (KEYNOTE-040): a randomised, open-label, phase 3 study. Lancet
                   2019;393:156-67.
               71.  Rischin D, Harrington KJ, Greil R, Soulieres D, Tahara M, et al. Protocol-specified final analysis of the phase 3 KEYNOTE-048 trial of
                   pembrolizumab (pembro) as first-line therapy for recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). J Clin Oncol
                   2019;37:6000.
               72.  Colevas AD, Bahleda R, Braiteh F, Balmanoukian A, Brana I, et al. Safety and clinical activity of atezolizumab in head and neck cancer:
                   results from a phase I trial. Ann Oncol 2018;29:2247-53.
               73.  Segal NH, Ou SI, Balmanoukian A, Fury MG, Massarelli E, et al. Safety and efficacy of durvalumab in patients with head and neck
                   squamous cell carcinoma: results from a phase I/II expansion cohort. Eur J Cancer 2019;109:154-61.
               74.  Licitra LF, Haddad RI, Even C, Tahara M, Dvorkin M, et al. EAGLE: a phase 3, randomized, open-label study of durvalumab (D) with
                   or without tremelimumab (T) in patients (pts) with recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC). J Clin
                   Oncol 2019;37:6012.
               75.  Pak AS, Wright MA, Matthews JP, Collins SL, Petruzzelli GJ, et al. Mechanisms of immune suppression in patients with head and
                   neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-
                   stimulating factor. Clin Cancer Res 1995;1:95-103.
               76.  Serafini P, Meckel K, Kelso M, Noonan K, Califano J, et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by
                   reducing myeloid-derived suppressor cell function. J Exp Med 2006;203:2691-702.
               77.  Komiya T, Huang CH. Updates in the clinical development of epacadostat and other indoleamine 2,3-dioxygenase 1 inhibitors (IDO1) for
                   human cancers. Front Oncol 2018;8:423.
               78.  Gadhikar MA, Myers JN. Recent advances in head and neck cancer: the beginning of the immunotherapy era in HNSCC. Adv Mod Oncol
                   Res 2018;4.
               79.  Newick K, O’Brien S, Moon E, Albelda SM. CAR T cell therapy for solid tumors. Ann Rev Med 2017;68:139-52.
               80.  Ohtani T, Yamada Y, Furuhashi A, Ohmura Y, Nakamura S, et al. Activated cytotoxic T-lymphocyte immunotherapy is effective for
                   advanced oral and maxillofacial cancers. Int J Oncol 2014;45:2051-7.
   32   33   34   35   36   37   38   39   40   41   42