Page 322 - Read Online
P. 322

Gooding et al. J Cancer Metastasis Treat 2019;5:41  I  http://dx.doi.org/10.20517/2394-4722.2019.11                       Page 13 of 14

               52.  Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their
                   gene structure, evolution, and expression. Genome Res 2012;22:1775-89.
               53.  Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions in diverse cellular contexts. Nat Rev Mol Cell Biol
                   2013;14:699-712.
               54.  Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013;20:300-7.
               55.  Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018;172:393-407.
               56.  Gooding AJ, Zhang B, Gunawardane L, Beard A, Valadkhan S, et al. The lncRNA BORG facilitates the survival and chemoresistance of
                   triple-negative breast cancers. Oncogene 2019;38:2020-41.
               57.  Gooding AJ, Zhang B, Jahanbani FK, Gilmore HL, Chang JC, et al. The lncRNA BORG drives breast cancer metastasis and disease
                   recurrence. Sci Rep 2017;7:12698.
               58.  Li X, Lee YK, Jeng JC, Yen Y, Schultz DC, et al. Role for KAP1 serine 824 phosphorylation and sumoylation/desumoylation switch in
                   regulating KAP1-mediated transcriptional repression. The Journal of biological chemistry 2007;282:36177-89.
               59.  Lee YK, Thomas SN, Yang AJ, Ann DK. Doxorubicin down-regulates Kruppel-associated box domain-associated protein 1 sumoylation
                   that relieves its transcription repression on p21WAF1/CIP1 in breast cancer MCF-7 cells. J Biol Chem 2007;282:1595-606.
               60.  Addison J, Koontz C, Fugett JH, Creighton CJ, Chen D, et al. KAP1 promotes proliferation and metastatic progression of breast cancer
                   cells. Cancer Res 2015;75:344-55.
               61.  Calderon MR, Verway M, Benslama RO, Birlea M, Bouttier M, et al. Ligand-dependent corepressor contributes to transcriptional
                   repression by C2H2 zinc-finger transcription factor ZBRK1 through association with KRAB-associated protein-1. Nucleic Acids Res
                   2014;42:7012-27.
               62.  Deb M, Kar S, Sengupta D, Shilpi A, Parbin S, et al. Chromatin dynamics: H3K4 methylation and H3 variant replacement during
                   development and in cancer. Cell Mol Life Sci 2014;71:3439-63.
               63.  Bunch H, Zheng X, Burkholder A, Dillon ST, Motola S, et al. TRIM28 regulates RNA polymerase II promoter-proximal pausing and
                   pause release. Nat Struct Mol Biol 2014;21:876-83.
               64.  Hu G, Kim J, Xu Q, Leng Y, Orkin SH, et al. A genome-wide RNAi screen identifies a new transcriptional module required for self-
                   renewal. Genes Dev 2009;23:837-48.
               65.  Batista PJ, Chang HY. Long noncoding RNAs: cellular address codes in development and disease. Cell 2013;152:1298-307.
               66.  Iyengar S, Farnham PJ. KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 2011;286:26267-76.
               67.  Crea F, Danesi R, Farrar WL. Cancer stem cell epigenetics and chemoresistance. Epigenomics 2009;1:63-79.
               68.  Quintieri L, Fantin M, Vizler C. Identification of molecular determinants of tumor sensitivity and resistance to anticancer drugs. Adv Exp
                   Med Biol 2007;593:95-104.
               69.  Dalton WS. The tumor microenvironment as a determinant of drug response and resistance. Drug Resist Updat 1999;2:285-8.
               70.  Hazlehurst LA, Landowski TH, Dalton WS. Role of the tumor microenvironment in mediating de novo resistance to drugs and
                   physiological mediators of cell death. Oncogene 2003;22:7396-402.
               71.  Naumov GN, Townson JL, MacDonald IC, Wilson SM, Bramwell VH, et al. Ineffectiveness of doxorubicin treatment on solitary dormant
                   mammary carcinoma cells or late-developing metastases. Breast Cancer Res Treat 2003;82:199-206.
               72.  Ranganathan AC, Adam AP, Zhang L, Aguirre-Ghiso JA. Tumor cell dormancy induced by p38SAPK and ER-stress signaling: an adaptive
                   advantage for metastatic cells? Cancer Biol Ther 2006;5:729-35.
               73.  Dai Y, Wang L, Tang J, Cao P, Luo Z, et al. Activation of anaphase-promoting complex by p53 induces a state of dormancy in cancer cells
                   against chemotherapeutic stress. Oncotarget 2016;7:25478-92.
               74.  Kleffel S, Schatton T. Tumor dormancy and cancer stem cells: two sides of the same coin? Adv Exp Med Biol 2013;734:145-79.
               75.  Zhao M, Geng R, Guo X, Yuan R, Zhou X, et al. PCAF/GCN5-mediated acetylation of RPA1 promotes nucleotide excision repair. Cell
                   Rep 2017;20:1997-2009.
               76.  Haring SJ, Mason AC, Binz SK, Wold MS. Cellular functions of human RPA1. Multiple roles of domains in replication, repair, and
                   checkpoints. J Biol Chem 2008;283:19095-111.
               77.  Baral E, Auer G. In vitro effect of doxorubicin on non-proliferating and proliferating epithelial cells. Int J Radiat Oncol Biol Phys
                   1990;19:963-5.
               78.  Li S, Kennedy M, Payne S, Kennedy K, Seewaldt VL, et al. Model of tumor dormancy/recurrence after short-term chemotherapy. PLoS
                   One 2014;9:e98021.
               79.  Ribeiro DM, Zanzoni A, Cipriano A, Delli Ponti R, Spinelli L, et al. Protein complex scaffolding predicted as a prevalent function of long
                   non-coding RNAs. Nucleic Acids Res 2018;46:917-28.
               80.  Bochkareva E, Korolev S, Lees-Miller SP, Bochkarev A. Structure of the RPA trimerization core and its role in the multistep DNA-binding
                   mechanism of RPA. EMBO J 2002;21:1855-63.
               81.  Wong JM, Ionescu D, Ingles CJ. Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation
                   in BRCA2. Oncogene 2003;22:28-33.
               82.  Romanova LY, Willers H, Blagosklonny MV, Powell SN. The interaction of p53 with replication protein A mediates suppression of
                   homologous recombination. Oncogene 2004;23:9025-33.
               83.  Li L, Lu X, Peterson CA, Legerski RJ. An interaction between the DNA repair factor XPA and replication protein A appears essential for
                   nucleotide excision repair. Mol Cell Biol 1995;15:5396-402.
               84.  Wang T, Zhang X, Li JJ. The role of NF-kappaB in the regulation of cell stress responses. Int Immunopharmacol 2002;2:1509-20.
               85.  Mercurio F, Manning AM. NF-kappaB as a primary regulator of the stress response. Oncogene 1999;18:6163-71.
               86.  Hoesel B, Schmid JA. The complexity of NF-kappaB signaling in inflammation and cancer. Mol Cancer 2013;12:86.
               87.  Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 2012;26:203-34.
               88.  Godwin P, Baird AM, Heavey S, Barr MP, O'Byrne KJ, et al. Targeting nuclear factor-kappa B to overcome resistance to chemotherapy.
   317   318   319   320   321   322   323   324   325   326   327