Page 21 - Read Online
P. 21

Page 12 of 14                      Di Raimo et al. J Cancer Metastasis Treat 2018;4:54  I  http://dx.doi.org/10.20517/2394-4722.2018.50

               108.  Chen J, Jiang CC, Jin L, Zhang XD. Regulation of PD-L1: a novel role of pro-survival signalling in cancer. Ann Oncol 2016;27:409-16.
               109.  Schütz F, Stefanovic S, Mayer L, von Au A, Domschke C, et al. PD-1/PD-L1 pathway in breast cancer. Oncol Res Treat 2017;40:294-7.
               110.  Sabatier R, Finetti P, Mamessier E, Adelaide J, Chaffanet M, et al. Prognostic and predictive value of PDL1 expression in breast cancer.
                   Oncotarget 2015;6:5449-64.
               111.  Mazel M, Jacot W, Pantel K, Bartkowiak K, Topart D, et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol
                   2015;9:1773-82.
               112.  Bębenek M, Duś D, Koźlak J. Prognostic value of the Fas/Fas ligand system in breast cancer. Contemp Oncol (Pozn) 2013;17:120-2.
               113.  Kim R, Emi M, Tanabe K, Uchida Y, Toge T. The role of Fas ligand and transforming growth factor beta in tumor progression: molecular
                   mechanisms of immune privilege via Fas-mediated apoptosis and potential targets for cancer therapy. Cancer 2004;100:2281-91.
               114.  Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev 1989;8:98-101.
               115.  de Groot AE, Roy S, Brown JS, Pienta KJ, Amend SR. Revisiting Seed and Soil: examining the primary tumor and cancer cell foraging in
                   metastasis. Mol Cancer Res 2017;15:361-70.
               116.  Amelot A, Terrier LM, Mazeron JJ, Valery CA, Cornu P, et al. Timeline metastatic progression: in the wake of the « seed and soil » theory.
                   Med Oncol 2017;34:185.
               117.  Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer 2009;9:285-93.
               118.  Chikina AS, Aleksandrova AIu. The cellular mechanisms and regulation of metastasis formation. Mol Biol (Mosk) 2014;48:195-213.
               119.  Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer
                   2017;17:302-17.
               120.  Chin AR, Wang SE. Cancer tills the premetastatic field: mechanistic basis and clinical implications. Clin Cancer Res 2016;22:3725-33.
               121.  Peinado H, Lavotshkin S, Lyden D. The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts.
                   Semin Cancer Biol 2011;21:139-46.
               122.  Liu ZJ, Semenza GL, Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis. J Zhejiang Univ Sci B 2015;16:32-43.
               123.  Inácio Pinto N, Carnier J, Oyama LM, Otoch JP, Alcântara PS, et al. Cancer as a proinflammatory environment: metastasis and cachexia.
                   Mediators Inflamm 2015;2015:791060.
               124.  Xie HY, Shao ZM, Li DQ. Tumor microenvironment: driving forces and potential therapeutic targets for breast cancer metastasis. Chin J
                   Cancer 2017;36:36.
               125.  Cox TR, Rumney RMH, Schoof EM, Perryman L, Høye AM, et al. The hypoxic cancer secretome induces pre-metastatic bone lesions
                   through lysyl oxidase. Nature 2015;522:106-10.
               126.  Barkan D, Green JE, Chambers AF. Extracellular matrix: a gatekeeper in the transition from dormancy to metastatic growth. Eur J Cancer
                   2010;46:1181-8.
               127.  Cox TR, Gartland A, Erler JT. Lysyl oxidase, a targetable secreted molecule involved in cancer metastasis. Cancer Res 2016;76:188-92.
               128.  Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell
                   recruitment to form the premetastatic niche. Cancer Cell 2009;15:35-44.
               129.  Cox TR, Bird D, Baker AM, Barker HE, Ho MW, et al. LOX-mediated collagen crosslinking is responsible for fibrosis-enhanced metastasis.
                   Cancer Res 2013;73:1721-32.
               130.  Barker HE, Bird D, Lang G, Erler JT. Tumor-secreted LOXL2 activates fibroblasts through FAK signaling. Mol Cancer Res
                   2013;11:1425-36.
               131.  Endo M, Nakano M, Kadomatsu T, Fukuhara S, Kuroda H, et al. Tumor cell-derived angiopoietin-like protein ANGPTL2 is a critical driver
                   of metastasis. Cancer Res 2012;72:1784-94.
               132.  García-Román J, Zentella-Dehesa A. Vascular permeability changes involved in tumor metastasis. Cancer Lett 2013;335:259-69.
               133.  Saharinen P, Eklund L, Pulkki K, Bono P, Alitalo K. VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol
                   Med 2011;17:347-62.
               134.  Heymann D, Téllez-Gabriel M. Circulating tumor cells: the importance of single cell analysis. Adv Exp Med Biol 2018;1068:45-58.
               135.  Desitter I, Guerrouahen BS, Benali-Furet N, Wechsler J, Jänne PA, et al. A new device for rapid isolation by size and characterization of rare
                   circulating tumor cells. Anticancer Res 2011;31:427-41.
               136.  Li Y, Wu S, Bai F. Molecular characterization of circulating tumor cells-from bench to bedside. Semin Cell Dev Biol 2018;75:88-97.
               137.  Grover PK, Cummins AG, Price TJ, Roberts-Thomson IC, Hardingham JE. Circulating tumour cells: the evolving concept and the
                   inadequacy of their enrichment by EpCAM-based methodology for basic and clinical cancer research. Ann Oncol 2014;25:1506-16.
               138.  Lee JS, Magbanua MJM, Park JW. Circulating tumor cells in breast cancer: applications in personalized medicine. Breast Cancer Res Treat
                   2016;160:411-24.
               139.  Königsberg R, Obermayr E, Bises G, Pfeiler G, Gneist M, et al. Detection of EpCAM positive and negative circulating tumor cells in
                   metastatic breast cancer patients. Acta Oncol 2011;50:700-10.
               140.  Campton DE, Ramirez AB, Nordberg JJ, Drovetto N, Clein AC, et al. High-recovery visual identification and single-cell retrieval of
                   circulating tumor cells for genomic analysis using a dual-technology platform integrated with automated immunofluorescence staining.
                   BMC Cancer 2015;15:360.
               141.  Hillig T, Horn P, Nygaard AB, Haugaard AS, Nejlund S, et al. In vitro detection of circulating tumor cells compared by the CytoTrack and
                   CellSearch methods. Tumour Biol 2015;36:4597-601.
               142.  Adams DL, Stefansson S, Haudenschild C, Martin SS, Charpentier M, et al. Cytometric characterization of circulating tumor cells captured
                   by microfiltration and their correlation to the CellSearch(®) CTC test. Cytometry A 2015;87:137-44.
               143.  Vona G, Sabile A, Louha M, Sitruk V, Romana S, et al. Isolation by size of epithelial tumor cells : a new method for the
                   immunomorphological and molecular characterization of circulatingtumor cells. Am J Pathol 2000;156:57-63.
               144.  Zhou MD, Hao S, Williams AJ, Harouaka RA, Schrand B, et al. Separable bilayer microfiltration device for viable label-free enrichment of
                   circulating tumour cells. Sci Rep 2014;4:7392.
   16   17   18   19   20   21   22   23   24   25   26