Page 20 - Read Online
P. 20

Di Raimo et al. J Cancer Metastasis Treat 2018;4:54  I  http://dx.doi.org/10.20517/2394-4722.2018.50                     Page 11 of  14

                   circulating tumor cells in the blood of female cancer patients. BMC Cancer 2010;10:666.
               69.  Christiansen JJ, Rajasekaran AK. Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis.
                   Cancer Res 2006;66:8319-26.
               70.  Fischer KR, Durrans A, Lee S, Sheng J, Li F, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes
                   to chemoresistance. Nature 2015;527:472-6.
               71.  Bhatia S, Monkman J, Toh AKL, Nagaraj SH, Thompson EW. Targeting epithelial-mesenchymal plasticity in cancer: clinical and preclinical
                   advances in therapy and monitoring. Biochem J 2017;474:3269-306.
               72.  Barriere G, Fici P, Gallerani G, Fabbri F, Zoli W, et al. Circulating tumor cells and epithelial, mesenchymal and stemness markers:
                   characterization of cell subpopulations. Ann Transl Med 2014;2:109.
               73.  Francart ME, Lambert J, Vanwynsberghe AM, Thompson EW, Bourcy M, et al. Epithelial-mesenchymal plasticity and circulating tumor
                   cells: travel companions to metastases. Dev Dyn 2018;247:432-50.
               74.  Yang J, Weinberg RA. Epithelial-mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell
                   2008;14:818-29.
               75.  Schmitt D, Andrews J, Tan M. Determination of breast cancer cell migratory ability. Methods Mol Biol 2016;1406:171-80.
               76.  Pandya P, Orgaz JL, Sanz-Moreno V. Modes of invasion during tumour dissemination. Mol Oncol 2017;11:5-27.
               77.  Te Boekhorst V, Friedl P. Plasticity of cancer cell invasion-mechanisms and implications for therapy. Adv Cancer Res 2016;132:209-64.
               78.  Jie XX, Zhang XY, Xu CJ. Epithelial-to-mesenchymal transition, circulating tumor cells and cancer metastasis: Mechanisms and clinical
                   applications. Oncotarget 2017;8:81558-71.
               79.  Tan EJ, Olsson AK, Moustakas A. Reprogramming during epithelial to mesenchymal transition under the control of TGFβ. Cell Adh Migr
                   2015;9:233-46.
               80.  Banyard J, Bielenberg DR. The role of EMT and MET in cancer dissemination. Connect Tissue Res 2015;56:403-13.
               81.  van Zijl F, Krupitza G, Mikulits W. Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res 2011;728:23-34.
               82.  Lintz M, Muñoz A, Reinhart-King CA. The mechanics of single cell and collective migration of tumor cells. J Biomech Eng 2017;139.
               83.  Gkretsi V, Stylianopoulos T. Cell Adhesion and matrix stiffness: coordinating cancer cell invasion and metastasis. Front Oncol 2018;8:145.
               84.  Carlini MJ, De Lorenzo MS, Puricelli L. Cross-talk between tumor cells and the microenvironment at the metastatic niche. Curr Pharm
                   Biotechnol 2011;12:1900-8.
               85.  Scarpa E, Mayor R. Collective cell migration in development. J Cell Biol 2016;212:143-55.
               86.  Friedl P, Gilmour D. Collective cell migration in morphogenesis, regeneration and cancer. Nat Rev Mol Cell Biol 2009;10:445-57.
               87.  Laser-Azogui A, Diamant-Levi T, Israeli S, Roytman Y, Tsarfaty I. Met-induced membrane blebbing leads to amoeboid cell motility and
                   invasion. Oncogene 2014;33:1788-98.
               88.  Khajah MA, Luqmani YA. Involvement of membrane blebbing in immunological disorders and cancer. Med Princ Pract 2016;25
                   Suppl 2:18-27.
               89.  Sabeh F, Shimizu-Hirota R, Weiss SJ. Protease-dependent versus -independent cancer cell invasion programs: three-dimensional amoeboid
                   movement revisited. J Cell Biol 2009;185:11-9.
               90.  Pinner S, Sahai E. Imaging amoeboid cancer cell motility in vivo. J Microsc 2008;231:441-5.
               91.  Furge KA, Zhang YW, Vande Woude GF. Met receptor tyrosine kinase: enhanced signaling through adapter proteins. Oncogene
                   2000;19:5582-9.
               92.  Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol (Dordr) 2016;39:397-410.
               93.  Karlsson MC, Gonzalez SF, Welin J, Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol
                   Oncol 2017;11:781-91.
               94.  Farnsworth RH, Achen MG, Stacker SA. The evolving role of lymphatics in cancer metastasis. Curr Opin Immunol 2018;53:64-73.
               95.  Karaman S, Detmar M. Mechanisms of lymphatic metastasis. J Clin Invest 2014;124:922-8.
               96.  Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Ylä-Herttuala S, et al. Vascular endothelial growth factor C promotes tumor
                   lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001;61:1786-90.
               97.  Yazawa Y, Kitahara M. Bilateral endolymphatic hydrops in Menière’s disease: review of temporal bone autopsies. Ann Otol Rhinol
                   Laryngol 1990;99:524-8.
               98.  Vaahtomeri K, Karaman S, Mäkinen T, Alitalo K. Lymphangiogenesis guidance by paracrine and pericellular factors. Genes Dev
                   2017;31:1615-34.
               99.  Ji RC. Lymph nodes and cancer metastasis: new perspectives on the role of intranodal lymphatic sinuses. Int J Mol Sci 2016;18.
               100.  Ran S, Volk L, Hall K, Flister MJ. Lymphangiogenesis and lymphatic metastasis in breast cancer. Pathophysiology 2010;17:229-51.
               101.  Nakamura Y, Yasuoka H, Tsujimoto M, Imabun S, Nakahara M, et al. Lymph vessel density correlates with nodal status, VEGF-C
                   expression, and prognosis in breast cancer. Breast Cancer Res Treat 2005;91:125-32.
               102.  Domschke C, Schneeweiss A, Stefanovic S, Wallwiener M, Heil J, et al. Cellular immune responses and immune escape mechanisms in
                   breast cancer: determinants of immunotherapy. Breast Care (Basel) 2016;11:102-7.
               103.  Terry S, Savagner P, Ortiz-Cuaran S, Mahjoubi L, Saintigny P, et al. New insights into the role of EMT in tumor immune escape. Mol Oncol
                   2017;11:824-46.
               104.  Wang M, Zhang C, Song Y, Wang Z, Wang Y, et al. Mechanism of immune evasion in breast cancer. Onco Targets Ther 2017;10:1561-73.
               105.  Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, et al. PD-L1 regulates the development, maintenance, and function of
                   induced regulatory T cells. J Exp Med 2009;206:3015-29.
               106.  Chen L, Gibbons DL, Goswami S, Cortez MA, Ahn YH, et al. Metastasis is regulated via microRNA-200/ZEB1 axis control of tumour cell
                   PD-L1 expression and intratumoral immunosuppression. Nat Commun 2014;5:5241.
               107.  Zhang P, Sun Y, Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle
                   2015;14:481-7.
   15   16   17   18   19   20   21   22   23   24   25