Page 62 - Read Online
P. 62

Jusino et al. J Cancer Metastasis Treat 2018;4:43  I  http://dx.doi.org/10.20517/2394-4722.2018.24                          Page 15 of 20

               18.  Lee AJ, Endesfelder D, Rowan AJ, Walther A, Birkbak NJ, Futreal PA, Downward J, Szallasi Z, Tomlinson IP, Howell M, Kschischo M,
                   Swanton C. Chromosomal instability confers intrinsic multidrug resistance. Cancer Res 2011;71:1858-70.
               19.  Greaves M, Maley CC. Clonal evolution in cancer. Nature 2012;481:306-13.
               20.  Nowell PC. The clonal evolution of tumor cell populations. Science 1976;194:23-8.
               21.  Loeb LA. Mutator phenotype may be required for multistage carcinogenesis. Cancer Res 1991;51:3075-9.
               22.  Fukasawa K, Wiener F, Vande Woude GF, Mai S. Genomic instability and apoptosis are frequent in p53 deficient young mice. Oncogene
                   1997;15:1295-302.
               23.  Tutt A, Gabriel A, Bertwistle D, Connor F, Paterson H, Peacock J, Ross G, Ashworth A. Absence of Brca2 causes genome instability by
                   chromosome breakage and loss associated with centrosome amplification. Curr Biol 1999;9:1107-10.
               24.  Xu X, Weaver Z, Linke SP, Li C, Gotay J, Wang XW, Harris CC, Ried T, Deng CX. Centrosome amplification and a defective G2-M
                   cell cycle checkpoint induce genetic instability in BRCA1 exon 11 isoform-deficient cells. Mol Cell 1999;3:389-95.
               25.  Zeng X, Shaikh FY, Harrison MK, Adon AM, Trimboli AJ, Carroll KA, Sharma N, Timmers C, Chodosh LA, Leone G, Saavedra
                   HI. The Ras oncogene signals centrosome amplification in mammary epithelial cells through cyclin D1/Cdk4 and Nek2. Oncogene
                   2010;29:5103-12.
               26.  Saavedra HI, Knauf JA, Shirokawa JM, Wang J, Ouyang B, Elisei R, Stambrook PJ, Fagin JA. The RAS oncogene induces genomic
                   instability in thyroid PCCL3 cells via the MAPK pathway. Oncogene 2000;19:3948-54.
               27.  Saavedra HI, Fukasawa K, Conn CW, Stambrook PJ. MAPK mediates RAS-induced chromosome instability. J Biol Chem
                   1999;274:38083-90.
               28.  Felsher DW, Bishop JM. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci U S A
                   1999;96:3940-4.
               29.  Weaver ZA, McCormack SJ, Liyanage M, du Manoir S, Coleman A, Schrock E, Dickson RB, Ried T. A recurring pattern of
                   chromosomal aberrations in mammary gland tumors of MMTV-cmyc transgenic mice. Genes Chromosomes Cancer 1999;25:251-60.
               30.  Meyerson M, Pellman D. Cancer genomes evolve by pulverizing single chromosomes. Cell 2011;144:9-10.
               31.  Zhang CZ, Leibowitz ML, Pellman D. Chromothripsis and beyond: rapid genome evolution from complex chromosomal
                   rearrangements. Genes Dev 2013;27:2513-30.
               32.  Wang Y, Jin F, Higgins R, McKnight K. The current view for the silencing of the spindle assembly checkpoint. Cell Cycle
                   2014;13:1694-701.
               33.  Tanaka K, Hirota T. Chromosome segregation machinery and cancer. Cancer Sci 2009;100:1158-65.
               34.  Suijkerbuijk SJ, Kops GJ. Preventing aneuploidy: the contribution of mitotic checkpoint proteins. Biochim Biophys Acta 2008;1786:24-31.
               35.  Lee M, Rivera-Rivera Y, Moreno CS, Saavedra HI. The E2F activators control multiple mitotic regulators and maintain genomic
                   integrity through Sgo1 and BubR1. Oncotarget 2017;8:77649-72.
               36.  Cappelletti V, Iorio E, Miodini P, Silvestri M, Dugo M, Daidone MG. Metabolic footprints and molecular subtypes in breast cancer. Dis
                   Markers 2017;2017:7687851.
               37.  Grande S, Palma A, Ricci-Vitiani L, Luciani AM, Buccarelli M, Biffoni M, Molinari A, Calcabrini A, D’Amore E, Guidoni L, Pallini R,
                   Viti V, Rosi A. Metabolic heterogeneity evidenced by MRS among patient-derived glioblastoma multiforme stem-like cells accounts for
                   cell clustering and different responses to drugs. Stem Cells Int 2018;2018:3292704.
               38.  Al-Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF. Therapeutic implications of cancer stem cells. Curr Opin Genet Dev
                   2004;14:43-7.
               39.  Ellsworth DL, Blackburn HL, Shriver CD, Rabizadeh S, Soon-Shiong P, Ellsworth RE. Single-cell sequencing and tumorigenesis:
                   improved understanding of tumor evolution and metastasis. Clin Transl Med 2017;6:15.
               40.  Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012;21:283-96.
               41.  Navin NE. The first five years of single-cell cancer genomics and beyond. Genome Res 2015;25:1499-507.
               42.  Alizadeh AA, Aranda V, Bardelli A, Blanpain C, Bock C, Borowski C, Caldas C, Califano A, Doherty M, Elsner M, Esteller M, Fitzgerald
                   R, Korbel JO, Lichter P, Mason CE, Navin N, Pe’er D, Polyak K, Roberts CW, Siu L, Snyder A, Stower H, Swanton C, Verhaak RG,
                   Zenklusen JC, Zuber J, Zucman-Rossi J. Toward understanding and exploiting tumor heterogeneity. Nat Med 2015;21:846-53.
               43.  Ding L, Raphael BJ, Chen F, Wendl MC. Advances for studying clonal evolution in cancer. Cancer Lett 2013;340:212-9.
               44.  Trikha P, Sharma N, Pena C, Reyes A, Pecot T, Khurshid S, Rawahneh M, Moffitt J, Stephens JA, Fernandez SA, Ostrowski MC, Leone
                   G. E2f3 in tumor macrophages promotes lung metastasis. Oncogene 2016;35:3636-46.
               45.  Navin N, Kendall J, Troge J, Andrews P, Rodgers L, McIndoo J, Cook K, Stepansky A, Levy D, Esposito D, Muthuswamy L, Krasnitz A,
                   McCombie WR, Hicks J, Wigler M. Tumour evolution inferred by single-cell sequencing. Nature 2011;472:90-4.
               46.  Wills QF, Mead AJ. Application of single-cell genomics in cancer: promise and challenges. Hum Mol Genet 2015;24:R74-84.
               47.  Zhu S, Qing T, Zheng Y, Jin L, Shi L. Advances in single-cell RNA sequencing and its applications in cancer research. Oncotarget
                   2017;8:53763-79.
               48.  Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, Aceto N, Bersani F, Brannigan BW, Xega K, Ciciliano
                   JC, Zhu H, MacKenzie OC, Trautwein J, Arora KS, Shahid M, Ellis HL, Qu N, Bardeesy N, Rivera MN, Deshpande V, Ferrone CR,
                   Kapur R, Ramaswamy S, Shioda T, Toner M, Maheswaran S, Haber DA. Single-cell RNA sequencing identifies extracellular matrix
                   gene expression by pancreatic circulating tumor cells. Cell Rep 2014;8:1905-18.
               49.  Navin N, Hicks J. Future medical applications of single-cell sequencing in cancer. Genome Med 2011;3:31.
               50.  Ren SC, Qu M, Sun YH. Investigating intratumour heterogeneity by single-cell sequencing. Asian J Androl 2013;15:729-34.
               51.  Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet 2016;17:175-88.
               52.  Dean FB, Hosono S, Fang L, Wu X, Faruqi AF, Bray-Ward P, Sun Z, Zong Q, Du Y, Du J, Driscoll M, Song W, Kingsmore SF, Egholm
   57   58   59   60   61   62   63   64   65   66   67