Page 78 - Read Online
P. 78
Page 271 Su et al. Intell Robot 2022;2(3):24474 I http://dx.doi.org/10.20517/ir.2022.17
13. Pan W, Cui S, Bian J, Zhang C, Wang F. Explaining algorithmic fairness through fairnessaware causal path decomposition. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining; 2021. pp. 1287–97. DOI
14. Grabowicz PA, Perello N, Mishra A. Marrying fairness and explainability in supervised learning. In: ACM Conference on Fairness,
Accountability, and Transparency; 2022. pp. 1905–16. DOI
15. Shpitser I, Pearl J. Complete identification methods for the causal hierarchy. J Mach Learn Res 2008;9:1941–79. DOI
16. Caton S, Haas C. Fairness in machine learning: A survey. arXiv preprint arXiv:201004053 2020. Available from: https://arxiv.org/abs/
2010.04053.
17. Du M, Yang F, Zou N, Hu X. Fairness in deep learning: a computational perspective. IEEE Intell Syst 2020;36:25–34. DOI
18. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Comput Surv
2021;54:1–35. DOI
19. Pessach D, Shmueli E. A Review on Fairness in Machine Learning. ACM Comput Surv 2022;55:1–44. DOI
20. Wan M, Zha D, Liu N, Zou N. Modeling techniques for machine learning fairness: a survey. arXiv preprint arXiv:211103015 2021.
Available from: https://arxiv.org/abs/2111.03015.
21. Makhlouf K, Zhioua S, Palamidessi C. On the applicability of machine learning fairness notions. ACM SIGKDD Explorations Newsletter
2021;23:14–23. DOI
22. Makhlouf K, Zhioua S, Palamidessi C. Survey on causalbased machine learning fairness notions. arXiv preprint arXiv:201009553 2020.
Available from: https://arxiv.org/abs/2010.09553.
23. Wu D, Liu J. Involve Humans in Algorithmic Fairness Issue: A Systematic Review. In: International Conference on Information; 2022.
pp. 161–76. DOI
24. Zhang J, Bareinboim E. Fairness in decisionmaking—the causal explanation formula. In: AAAI Conference on Artificial Intelligence.
vol. 32; 2018. pp. 2037–45. DOI
25. Pearl J, Mackenzie D. The book of why: the new science of cause and effect. Basic books; 2018. DOI
26. Zhang L, Wu Y, Wu X. A causal framework for discovering and removing direct and indirect discrimination. In: International Joint
Conference on Artificial Intelligence; 2017. pp. 3929–35. DOI
27. Zhang L, Wu Y, Wu X. Causal modelingbased discrimination discovery and removal: Criteria, bounds, and algorithms. IEEE Trans
Knowl Data Eng 2018;31:2035–50. DOI
28. Kilbertus N, RojasCarulla M, Parascandolo G, et al. Avoiding discrimination through causal reasoning. In: Advances in Neural
Information Processing Systems; 2017. pp. 656–66. DOI
29. Zhang L, Wu Y, Wu X. Situation testingbased discrimination discovery: a causal inference approach. In: International Joint Conference
on Artificial Intelligence; 2016. pp. 2718–24. DOI
30. Huan W, Wu Y, Zhang L, Wu X. Fairness through equality of effort. In: The Web Conference; 2020. pp. 743–51. DOI
31. Wu Y, Zhang L, Wu X, Tong H. Pcfairness: a unified framework for measuring causalitybased fairness. Advances in Neural Information
Processing Systems 2019.
32. Khademi A, Lee S, Foley D, Honavar V. Fairness in algorithmic decision making: an excursion through the lens of causality. In: The
Web Conference; 2019. pp. 2907–14. DOI
33. Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology
1974;66:688. DOI
34. SplawaNeyman J, Dabrowska DM, Speed T. On the application of probability theory to agricultural experiments. Essay on principles.
Section 9. Statist Sci 1990:465–72. DOI
35. Bendick M. Situation testing for employment discrimination in the United States of America. Horizons stratégiques 2007;5:17–39. DOI
36. Luong BT, Ruggieri S, Turini F. kNN as an implementation of situation testing for discrimination discovery and prevention. In: ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining; 2011. pp. 502–10. DOI
37. Imbens GW, Rubin DB. Causal inference in statistics, social, and biomedical sciences. Cambridge University Press; 2015.
38. Zemel R, Wu Y, Swersky K, Pitassi T, Dwork C. Learning fair representations. In: International Conference on Machine Learning; 2013.
pp. 325–33. DOI
39. Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S. Certifying and removing disparate impact. In: proceedings
of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2015. pp. 259–68. DOI
40. Xu D, Wu Y, Yuan S, Zhang L, Wu X. Achieving causal fairness through generative adversarial networks. In: International Joint
Conference on Artificial Intelligence; 2019. pp. 1452–58. DOI
41. Kocaoglu M, Snyder C, Dimakis AG, Vishwanath S. CausalGAN: Learning causal implicit generative models with adversarial training.
In: International Conference on Learning Representations; 2018. DOI
42. Salimi B, Howe B, Suciu D. Data management for causal algorithmic fairness. IEEE Data Eng Bull 2019:2435. Available from:
http://sites.computer.org/debull/A19sept/p24.pdf.
43. Salimi B, Rodriguez L, Howe B, Suciu D. Interventional fairness: Causal database repair for algorithmic fairness. In: International
Conference on Management of Data; 2019. pp. 793–810. DOI
44. Nabi R, Shpitser I. Fair inference on outcomes. In: AAAI Conference on Artificial Intelligence; 2018. DOI
45. Chiappa S. Pathspecific counterfactual fairness. In: AAAI Conference on Artificial Intelligence; 2019. pp. 7801–8. DOI
46. Agarwal A, Beygelzimer A, Dudík M, Langford J, Wallach H. A reductions approach to fair classification. In: International Conference
on Machine Learning; 2018. pp. 60–69. [DOI: http://proceedings.mlr.press/v80/agarwal18a.html]
47. Bechavod Y, Ligett K. Learning fair classifiers: a regularizationinspired approach. arXiv preprint arXiv:170700044 2017. Available