Page 78 - Read Online
P. 78

Page 271                          Su et al. Intell Robot 2022;2(3):244­74  I http://dx.doi.org/10.20517/ir.2022.17


               13.  Pan W, Cui S, Bian J, Zhang C, Wang F. Explaining algorithmic fairness through fairness­aware causal path decomposition. In: ACM
                   SIGKDD International Conference on Knowledge Discovery and Data Mining; 2021. pp. 1287–97. DOI
               14.  Grabowicz PA, Perello N, Mishra A. Marrying fairness and explainability in supervised learning. In: ACM Conference on Fairness,
                   Accountability, and Transparency; 2022. pp. 1905–16. DOI
               15.  Shpitser I, Pearl J. Complete identification methods for the causal hierarchy. J Mach Learn Res 2008;9:1941–79. DOI
               16.  Caton S, Haas C. Fairness in machine learning: A survey. arXiv preprint arXiv:201004053 2020. Available from: https://arxiv.org/abs/
                   2010.04053.
               17.  Du M, Yang F, Zou N, Hu X. Fairness in deep learning: a computational perspective. IEEE Intell Syst 2020;36:25–34. DOI
               18.  Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A. A survey on bias and fairness in machine learning. ACM Comput Surv
                   2021;54:1–35. DOI
               19.  Pessach D, Shmueli E. A Review on Fairness in Machine Learning. ACM Comput Surv 2022;55:1–44. DOI
               20.  Wan M, Zha D, Liu N, Zou N. Modeling techniques for machine learning fairness: a survey. arXiv preprint arXiv:211103015 2021.
                   Available from: https://arxiv.org/abs/2111.03015.
               21.  Makhlouf K, Zhioua S, Palamidessi C. On the applicability of machine learning fairness notions. ACM SIGKDD Explorations Newsletter
                   2021;23:14–23. DOI
               22.  Makhlouf K, Zhioua S, Palamidessi C. Survey on causal­based machine learning fairness notions. arXiv preprint arXiv:201009553 2020.
                   Available from: https://arxiv.org/abs/2010.09553.
               23.  Wu D, Liu J. Involve Humans in Algorithmic Fairness Issue: A Systematic Review. In: International Conference on Information; 2022.
                   pp. 161–76. DOI
               24.  Zhang J, Bareinboim E. Fairness in decision­making—the causal explanation formula. In: AAAI Conference on Artificial Intelligence.
                   vol. 32; 2018. pp. 2037–45. DOI
               25.  Pearl J, Mackenzie D. The book of why: the new science of cause and effect. Basic books; 2018. DOI
               26.  Zhang L, Wu Y, Wu X. A causal framework for discovering and removing direct and indirect discrimination. In: International Joint
                   Conference on Artificial Intelligence; 2017. pp. 3929–35. DOI
               27.  Zhang L, Wu Y, Wu X. Causal modeling­based discrimination discovery and removal: Criteria, bounds, and algorithms. IEEE Trans
                   Knowl Data Eng 2018;31:2035–50. DOI
               28.  Kilbertus N, Rojas­Carulla M, Parascandolo G, et al. Avoiding discrimination through causal reasoning. In: Advances in Neural
                   Information Processing Systems; 2017. pp. 656–66. DOI
               29.  Zhang L, Wu Y, Wu X. Situation testing­based discrimination discovery: a causal inference approach. In: International Joint Conference
                   on Artificial Intelligence; 2016. pp. 2718–24. DOI
               30.  Huan W, Wu Y, Zhang L, Wu X. Fairness through equality of effort. In: The Web Conference; 2020. pp. 743–51. DOI
               31.  Wu Y, Zhang L, Wu X, Tong H. Pc­fairness: a unified framework for measuring causality­based fairness. Advances in Neural Information
                   Processing Systems 2019.
               32.  Khademi A, Lee S, Foley D, Honavar V. Fairness in algorithmic decision making: an excursion through the lens of causality. In: The
                   Web Conference; 2019. pp. 2907–14. DOI
               33.  Rubin DB. Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology
                   1974;66:688. DOI
               34.  Splawa­Neyman J, Dabrowska DM, Speed T. On the application of probability theory to agricultural experiments. Essay on principles.
                   Section 9. Statist Sci 1990:465–72. DOI
               35.  Bendick M. Situation testing for employment discrimination in the United States of America. Horizons stratégiques 2007;5:17–39. DOI
               36.  Luong BT, Ruggieri S, Turini F. k­NN as an implementation of situation testing for discrimination discovery and prevention. In: ACM
                   SIGKDD International Conference on Knowledge Discovery and Data Mining; 2011. pp. 502–10. DOI
               37.  Imbens GW, Rubin DB. Causal inference in statistics, social, and biomedical sciences. Cambridge University Press; 2015.
               38.  Zemel R, Wu Y, Swersky K, Pitassi T, Dwork C. Learning fair representations. In: International Conference on Machine Learning; 2013.
                   pp. 325–33. DOI
               39.  Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S. Certifying and removing disparate impact. In: proceedings
                   of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; 2015. pp. 259–68. DOI
               40.  Xu D, Wu Y, Yuan S, Zhang L, Wu X. Achieving causal fairness through generative adversarial networks. In: International Joint
                   Conference on Artificial Intelligence; 2019. pp. 1452–58. DOI
               41.  Kocaoglu M, Snyder C, Dimakis AG, Vishwanath S. CausalGAN: Learning causal implicit generative models with adversarial training.
                   In: International Conference on Learning Representations; 2018. DOI
               42.  Salimi B, Howe B, Suciu D. Data management for causal algorithmic fairness. IEEE Data Eng Bull 2019:24­35. Available from:
                   http://sites.computer.org/debull/A19sept/p24.pdf.
               43.  Salimi B, Rodriguez L, Howe B, Suciu D. Interventional fairness: Causal database repair for algorithmic fairness. In: International
                   Conference on Management of Data; 2019. pp. 793–810. DOI
               44.  Nabi R, Shpitser I. Fair inference on outcomes. In: AAAI Conference on Artificial Intelligence; 2018. DOI
               45.  Chiappa S. Path­specific counterfactual fairness. In: AAAI Conference on Artificial Intelligence; 2019. pp. 7801–8. DOI
               46.  Agarwal A, Beygelzimer A, Dudík M, Langford J, Wallach H. A reductions approach to fair classification. In: International Conference
                   on Machine Learning; 2018. pp. 60–69. [DOI: http://proceedings.mlr.press/v80/agarwal18a.html]
               47.  Bechavod Y, Ligett K. Learning fair classifiers: a regularization­inspired approach. arXiv preprint arXiv:170700044 2017. Available
   73   74   75   76   77   78   79   80   81   82   83