Page 45 - Read Online
P. 45

Page 143                         Tang et al. Intell Robot 2022;2(2):130­44  I http://dx.doi.org/10.20517/ir.2022.07


                  10.1109/TITS.2021.3077883]
               15. Minematsu T, Shimada A, Uchiyama H, Taniguchi R. Analytics of deep neural network­based background subtraction. J Imaging
                  2018;4:78. [DOI: 10.3390/jimaging4060078]
               16. Giraldo JH, Javed S, Sultana M, Jung SK, Bouwmans T. The emerging field of graph signal processing for moving object segmentation.
                  In: International Workshop on Frontiers of Computer Vision. Virtual, Online; 2021. pp. 31–45. [DOI: 10.1007/978­3­030­81638­4­3]
               17. Giraldo JH, Javed S, Bouwmans T. Graph Moving Object Segmentation. IEEE Trans Pattern Anal Mach Intell 2022;44:2485­503. [DOI:
                  10.1109/TPAMI.2020.3042093]
               18. Sengar SS, Mukhopadhyay S. Moving object area detection using normalized self adaptive optical flow. Optik 2016;127:6258­67. [DOI:
                  10.1016/j.ijleo.2016.03.061]
               19. Ni J, Chen Y, Chen Y, et al. A survey on theories and applications for self­driving cars based on deep learning methods. Applied Sciences
                  2020;10:2749. [DOI: 10.3390/app10082749]
               20. Wang Y, Zhu L, Yu Z. Foreground detection for infrared videos with multiscale 3­D fully convolutional network. IEEE Geosci Remote
                  Sensing Lett 2019;16:712­6. [DOI: 10.1109/LGRS.2018.2881053]
               21. Ni J, Shen K, Chen Y, Cao W, Yang SX. An improved deep network­based scene classification method for self­driving cars. IEEE Trans
                  Instrum Meas 2022;71:1­14. [DOI: 10.1109/TIM.2022.3146923]
               22. Mahmoudabadi H, Olsen MJ, Todorovic S. Detecting sudden moving objects in a series of digital images with different exposure times.
                  Computer Vision and Image Understanding 2017;158:17­30. [DOI: 10.1016/j.cviu.2017.01.004]
               23. Wang C, Cheng J, Chi W, Yan T, Meng MQH. Semantic­aware informative path planning for efficient object search using mobile robot.
                  IEEE Trans Syst Man Cybern, Syst 2021;51:5230­43. [DOI: 10.1109/TSMC.2019.2946646]
               24. Liu Z, An D, Huang X. Moving target shadow detection and global background reconstruction for VideoSAR based on single­frame
                  imagery. IEEE Access 2019;7:42418­25. [DOI: 10.1109/ACCESS.2019.2907146]
               25. Talab AMA, Huang Z, Xi F, Haiming L. Moving crack detection based on improved VIBE and multiple filtering in image processing
                  techniques. IJSIP 2015;8:275­86. [DOI: 10.14257/ijsip.2015.8.2.27]
               26. Gao Y, Cheng P. Full­scale video­based detection of smoke from forest fires combining ViBe and MSER algorithms. Fire Technol
                  2021;57:1637­66. [DOI: 10.1007/s10694­020­01052­3]
               27. Huang W, Liu L, Yue C, Li H. The moving target detection algorithm based on the improved visual background extraction. Infrared
                  Physics & Technology 2015;71:518­25. [DOI: 10.1016/j.infrared.2015.06.011]
               28. Qiu S, Tang Y, Du Y, Yang S. The infrared moving target extraction and fast video reconstruction algorithm. Infrared Physics & Technology
                  2019;97:85­92. [DOI: 10.1016/j.infrared.2018.11.025]
               29. Yue Y, Xu D, Qian Z, Shi H, Zhang H. AntViBe: improved vibe algorithm based on ant colony clustering under dynamic background.
                  Mathematical Problems in Engineering 2020;2020:1­13. [DOI: 10.1155/2020/7478626]
               30. Nagarathinam K, Kathavarayan RS. Moving shadow detection based on stationary wavelet transform and zernike moments. IET Computer
                  Vision 2018;12:787­95. [DOI: 10.1049/iet­cvi.2017.0273]
               31. Khare M, Srivastava RK, Khare A. Moving shadow detection and removal­a wavelet transform based approach. IET Computer Vision
                  2014;8:701­17. [DOI: 10.1049/iet­cvi.2014.0028]
               32. Stauffer C, Grimson WEL. Adaptive background mixture models for real­time tracking. In: Proceedings of the 1999 IEEE Computer
                  Society Conference on Computer Vision and Pattern Recognition (CVPR’99). vol. 2. Fort Collins, CO, USA; 1999. pp. 246–52. [DOI:
                  10.1109/CVPR.1999.784637]
               33. KaewTraKulPong P, Bowden R. In: An Improved Adaptive Background Mixture Model for Real­time Tracking with Shadow Detection.
                  Boston, MA: Springer US; 2002. pp. 135–44. [DOI: 10.1007/978­1­4615­0913­4­11]
               34. Hofmann M, Tiefenbacher P, Rigoll G. Background segmentation with feedback: The Pixel­Based Adaptive Segmenter. In: 2012 IEEE
                  Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, RI, United states; 2012. pp. 38–43.
                  [DOI: 10.1109/CVPRW.2012.6238925]
               35. Barnich O, Van Droogenbroeck M.  ViBE: a powerful random technique to estimate the background in video sequences.  In:
                  2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan; 2009. pp. 945–48. [DOI:
                  10.1109/ICASSP.2009.4959741]
               36. Barnich O, Van Droogenbroeck M. ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process
                  2011;20:1709­24. [DOI: 10.1109/TIP.2010.2101613]
               37. Zhu F, Jiang P, Wang Z. ViBeExt: The extension of the universal background subtraction algorithm for distributed smart camera. In: 2012
                  International Symposium on Instrumentation Measurement, Sensor Network and Automation (IMSNA). vol. 1. Sanya, Hainan, China;
                  2012. pp. 164–68. [DOI: 10.1109/MSNA.2012.6324539]
               38. Chen F, Zhu B, Jing W, Yuan L. Removal shadow with background subtraction model ViBe algorithm. In: 2013 2nd International
                  Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA). Toronto, ON, Canada; 2013. pp. 264–69.
                  [DOI: 10.1109/IMSNA.2013.6743265]
               39. Yang Y, Han D, Ding J, Yang Y. An improved ViBe for video moving object detection based on evidential reasoning. In: 2016 IEEE
                  International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). Baden­Baden, Germany: IEEE; 2016. pp.
                  26–31. [DOI: 10.1109/MFI.2016.7849462]
               40. Liu L, Chai Gh, Qu Z. Moving target detection based on improved ghost suppression and adaptive visual background extraction. J Cent
                  South Univ 2021;28:747­59. [DOI: 10.1007/s11771­021­4642­9]
               41. Bo G, Kefeng S, Daoyin Q, Hongtao Z. Moving object detection based on improved ViBe algorithm. IJSEIA 2015;9:225­32. [DOI:
   40   41   42   43   44   45   46   47   48   49   50