Page 45 - Read Online
P. 45
Page 143 Tang et al. Intell Robot 2022;2(2):13044 I http://dx.doi.org/10.20517/ir.2022.07
10.1109/TITS.2021.3077883]
15. Minematsu T, Shimada A, Uchiyama H, Taniguchi R. Analytics of deep neural networkbased background subtraction. J Imaging
2018;4:78. [DOI: 10.3390/jimaging4060078]
16. Giraldo JH, Javed S, Sultana M, Jung SK, Bouwmans T. The emerging field of graph signal processing for moving object segmentation.
In: International Workshop on Frontiers of Computer Vision. Virtual, Online; 2021. pp. 31–45. [DOI: 10.1007/97830308163843]
17. Giraldo JH, Javed S, Bouwmans T. Graph Moving Object Segmentation. IEEE Trans Pattern Anal Mach Intell 2022;44:2485503. [DOI:
10.1109/TPAMI.2020.3042093]
18. Sengar SS, Mukhopadhyay S. Moving object area detection using normalized self adaptive optical flow. Optik 2016;127:625867. [DOI:
10.1016/j.ijleo.2016.03.061]
19. Ni J, Chen Y, Chen Y, et al. A survey on theories and applications for selfdriving cars based on deep learning methods. Applied Sciences
2020;10:2749. [DOI: 10.3390/app10082749]
20. Wang Y, Zhu L, Yu Z. Foreground detection for infrared videos with multiscale 3D fully convolutional network. IEEE Geosci Remote
Sensing Lett 2019;16:7126. [DOI: 10.1109/LGRS.2018.2881053]
21. Ni J, Shen K, Chen Y, Cao W, Yang SX. An improved deep networkbased scene classification method for selfdriving cars. IEEE Trans
Instrum Meas 2022;71:114. [DOI: 10.1109/TIM.2022.3146923]
22. Mahmoudabadi H, Olsen MJ, Todorovic S. Detecting sudden moving objects in a series of digital images with different exposure times.
Computer Vision and Image Understanding 2017;158:1730. [DOI: 10.1016/j.cviu.2017.01.004]
23. Wang C, Cheng J, Chi W, Yan T, Meng MQH. Semanticaware informative path planning for efficient object search using mobile robot.
IEEE Trans Syst Man Cybern, Syst 2021;51:523043. [DOI: 10.1109/TSMC.2019.2946646]
24. Liu Z, An D, Huang X. Moving target shadow detection and global background reconstruction for VideoSAR based on singleframe
imagery. IEEE Access 2019;7:4241825. [DOI: 10.1109/ACCESS.2019.2907146]
25. Talab AMA, Huang Z, Xi F, Haiming L. Moving crack detection based on improved VIBE and multiple filtering in image processing
techniques. IJSIP 2015;8:27586. [DOI: 10.14257/ijsip.2015.8.2.27]
26. Gao Y, Cheng P. Fullscale videobased detection of smoke from forest fires combining ViBe and MSER algorithms. Fire Technol
2021;57:163766. [DOI: 10.1007/s10694020010523]
27. Huang W, Liu L, Yue C, Li H. The moving target detection algorithm based on the improved visual background extraction. Infrared
Physics & Technology 2015;71:51825. [DOI: 10.1016/j.infrared.2015.06.011]
28. Qiu S, Tang Y, Du Y, Yang S. The infrared moving target extraction and fast video reconstruction algorithm. Infrared Physics & Technology
2019;97:8592. [DOI: 10.1016/j.infrared.2018.11.025]
29. Yue Y, Xu D, Qian Z, Shi H, Zhang H. AntViBe: improved vibe algorithm based on ant colony clustering under dynamic background.
Mathematical Problems in Engineering 2020;2020:113. [DOI: 10.1155/2020/7478626]
30. Nagarathinam K, Kathavarayan RS. Moving shadow detection based on stationary wavelet transform and zernike moments. IET Computer
Vision 2018;12:78795. [DOI: 10.1049/ietcvi.2017.0273]
31. Khare M, Srivastava RK, Khare A. Moving shadow detection and removala wavelet transform based approach. IET Computer Vision
2014;8:70117. [DOI: 10.1049/ietcvi.2014.0028]
32. Stauffer C, Grimson WEL. Adaptive background mixture models for realtime tracking. In: Proceedings of the 1999 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (CVPR’99). vol. 2. Fort Collins, CO, USA; 1999. pp. 246–52. [DOI:
10.1109/CVPR.1999.784637]
33. KaewTraKulPong P, Bowden R. In: An Improved Adaptive Background Mixture Model for Realtime Tracking with Shadow Detection.
Boston, MA: Springer US; 2002. pp. 135–44. [DOI: 10.1007/978146150913411]
34. Hofmann M, Tiefenbacher P, Rigoll G. Background segmentation with feedback: The PixelBased Adaptive Segmenter. In: 2012 IEEE
Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Providence, RI, United states; 2012. pp. 38–43.
[DOI: 10.1109/CVPRW.2012.6238925]
35. Barnich O, Van Droogenbroeck M. ViBE: a powerful random technique to estimate the background in video sequences. In:
2009 IEEE International Conference on Acoustics, Speech and Signal Processing. Taipei, Taiwan; 2009. pp. 945–48. [DOI:
10.1109/ICASSP.2009.4959741]
36. Barnich O, Van Droogenbroeck M. ViBe: a universal background subtraction algorithm for video sequences. IEEE Trans Image Process
2011;20:170924. [DOI: 10.1109/TIP.2010.2101613]
37. Zhu F, Jiang P, Wang Z. ViBeExt: The extension of the universal background subtraction algorithm for distributed smart camera. In: 2012
International Symposium on Instrumentation Measurement, Sensor Network and Automation (IMSNA). vol. 1. Sanya, Hainan, China;
2012. pp. 164–68. [DOI: 10.1109/MSNA.2012.6324539]
38. Chen F, Zhu B, Jing W, Yuan L. Removal shadow with background subtraction model ViBe algorithm. In: 2013 2nd International
Symposium on Instrumentation and Measurement, Sensor Network and Automation (IMSNA). Toronto, ON, Canada; 2013. pp. 264–69.
[DOI: 10.1109/IMSNA.2013.6743265]
39. Yang Y, Han D, Ding J, Yang Y. An improved ViBe for video moving object detection based on evidential reasoning. In: 2016 IEEE
International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI). BadenBaden, Germany: IEEE; 2016. pp.
26–31. [DOI: 10.1109/MFI.2016.7849462]
40. Liu L, Chai Gh, Qu Z. Moving target detection based on improved ghost suppression and adaptive visual background extraction. J Cent
South Univ 2021;28:74759. [DOI: 10.1007/s1177102146429]
41. Bo G, Kefeng S, Daoyin Q, Hongtao Z. Moving object detection based on improved ViBe algorithm. IJSEIA 2015;9:22532. [DOI: