Page 44 - Read Online
P. 44

Tang et al. Intell Robot 2022;2(2):130­44  I http://dx.doi.org/10.20517/ir.2022.07  Page 142


               DECLARATIONS

               Authors’ contributions
               Funding acquisition: Ni J
               Project administration: Ni J, Shi P
               Writing-original draft: Tang G
               Writing-review and editing: Li Y, Zhu J


               Availability of data and materials
               Not applicable.


               Financial support and sponsorship
               ThisworkhasbeensupportedbytheNationalNaturalScienceFoundationofChina(61873086)andtheScience
               and Technology Support Program of Changzhou (CE20215022).


               Conflicts of interest
               All authors declared that they have no conflicts of interest to this work.

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2022.



               REFERENCES
               1.  Ni J, Zhang X, Shi P, Zhu J. An Improved kernelized correlation filter based visual tracking method. Mathematical Problems in Engineering
                  2018;2018:1­12. [DOI: 10.1155/2018/6931020]
               2.  Zhang Z, Chen B, Yang M. Moving target detection based on time reversal in a multipath environment. IEEE Trans Aerosp Electron Syst
                  2021;57:3221­36. [DOI: 10.1109/TAES.2021.3074131]
               3.  Ni J, Yang L, Wu L, Fan X. An improved spinal neural system­based approach for heterogeneous AUVs cooperative hunting. Int J Fuzzy
                  Syst 2018;20:672­86. [DOI: 10.1007/s40815­017­0395­x]
               4.  Tivive FHC, Bouzerdoum A. Toward moving target detection in through­the­wall radar imaging. IEEE Trans Geosci Remote Sensing
                  2021;59:2028­40. [DOI: 10.1109/TGRS.2020.3005199]
               5.  Ni J, Gong T, Gu Y, Zhu J, Fan X. An improved deep residual network­based semantic simultaneous localization and mapping method
                  for monocular vision robot. Comput Intell Neurosci 2020;2020:7490840. [DOI: 10.1155/2020/7490840]
               6.  Lu X, Mao X, Liu H, Meng X, Rai L. Event camera point cloud feature analysis and shadow removal for road traffic sensing. IEEE
                  Sensors J 2022;22:3358­69. [DOI: 10.1109/JSEN.2021.3138736]
               7.  Negri P. Estimating the queue length at street intersections by using a movement feature space approach. IET Image Processing 2014;8:406­
                  16. [DOI: 10.1049/iet­ipr.2013.0496]
               8.  Sengar SS, Mukhopadhyay S. Motion detection using block based bi­directional optical flow method. Journal of Visual Communication
                  and Image Representation 2017;49:89­103. [DOI: 10.1016/j.jvcir.2017.08.007]
               9.  Chen Y, Wang J, Zhu B, Tang M, Lu H. Pixelwise deep sequence learning for moving object detection. IEEE Trans Circuits Syst Video
                  Technol 2019;29:2567­79. [DOI: 10.1109/TCSVT.2017.2770319]
               10. Li J, Pan ZM, Zhang ZH, Zhang H. Dynamic ARMA­based background subtraction for moving objects detection. IEEE Access
                  2019;7:128659­68. [DOI: 10.1109/ACCESS.2019.2939672]
               11. Garcia­Garcia B, Bouwmans T, Silva AJR. Background subtraction in real applications: challenges, current models and future directions.
                  Computer Science Review 2020;35:100204. [DOI: 10.1016/j.cosrev.2019.100204]
               12. Cristani M, Farenzena M, Bloisi D, Murino V. Background subtraction for automated multisensor surveillance: a comprehensive review.
                  EURASIP J Adv Signal Process 2010;2010. [DOI: 10.1155/2010/343057]
               13. Javed S, Narayanamurthy P, Bouwmans T, Vaswani N. Robust PCA and robust subspace tracking: a comparative evaluation. In: 2018 IEEE
                  Statistical Signal Processing Workshop (SSP). Freiburg im Breisgau, Germany; 2018. pp. 836–40. [DOI: 10.1109/SSP.2018.8450718]
               14. Mandal M, Vipparthi SK. An Empirical Review of Deep Learning Frameworks for Change Detection: Model Design, Experimental
                  Frameworks, Challenges and Research Needs. IEEE Transactions on Intelligent Transportation Systems 2021:Article in Press. [DOI:
   39   40   41   42   43   44   45   46   47   48   49