Page 44 - Read Online
P. 44
Tang et al. Intell Robot 2022;2(2):13044 I http://dx.doi.org/10.20517/ir.2022.07 Page 142
DECLARATIONS
Authors’ contributions
Funding acquisition: Ni J
Project administration: Ni J, Shi P
Writing-original draft: Tang G
Writing-review and editing: Li Y, Zhu J
Availability of data and materials
Not applicable.
Financial support and sponsorship
ThisworkhasbeensupportedbytheNationalNaturalScienceFoundationofChina(61873086)andtheScience
and Technology Support Program of Changzhou (CE20215022).
Conflicts of interest
All authors declared that they have no conflicts of interest to this work.
Ethical approval and consent to participate
Not applicable.
Consent for publication
Not applicable.
Copyright
© The Author(s) 2022.
REFERENCES
1. Ni J, Zhang X, Shi P, Zhu J. An Improved kernelized correlation filter based visual tracking method. Mathematical Problems in Engineering
2018;2018:112. [DOI: 10.1155/2018/6931020]
2. Zhang Z, Chen B, Yang M. Moving target detection based on time reversal in a multipath environment. IEEE Trans Aerosp Electron Syst
2021;57:322136. [DOI: 10.1109/TAES.2021.3074131]
3. Ni J, Yang L, Wu L, Fan X. An improved spinal neural systembased approach for heterogeneous AUVs cooperative hunting. Int J Fuzzy
Syst 2018;20:67286. [DOI: 10.1007/s408150170395x]
4. Tivive FHC, Bouzerdoum A. Toward moving target detection in throughthewall radar imaging. IEEE Trans Geosci Remote Sensing
2021;59:202840. [DOI: 10.1109/TGRS.2020.3005199]
5. Ni J, Gong T, Gu Y, Zhu J, Fan X. An improved deep residual networkbased semantic simultaneous localization and mapping method
for monocular vision robot. Comput Intell Neurosci 2020;2020:7490840. [DOI: 10.1155/2020/7490840]
6. Lu X, Mao X, Liu H, Meng X, Rai L. Event camera point cloud feature analysis and shadow removal for road traffic sensing. IEEE
Sensors J 2022;22:335869. [DOI: 10.1109/JSEN.2021.3138736]
7. Negri P. Estimating the queue length at street intersections by using a movement feature space approach. IET Image Processing 2014;8:406
16. [DOI: 10.1049/ietipr.2013.0496]
8. Sengar SS, Mukhopadhyay S. Motion detection using block based bidirectional optical flow method. Journal of Visual Communication
and Image Representation 2017;49:89103. [DOI: 10.1016/j.jvcir.2017.08.007]
9. Chen Y, Wang J, Zhu B, Tang M, Lu H. Pixelwise deep sequence learning for moving object detection. IEEE Trans Circuits Syst Video
Technol 2019;29:256779. [DOI: 10.1109/TCSVT.2017.2770319]
10. Li J, Pan ZM, Zhang ZH, Zhang H. Dynamic ARMAbased background subtraction for moving objects detection. IEEE Access
2019;7:12865968. [DOI: 10.1109/ACCESS.2019.2939672]
11. GarciaGarcia B, Bouwmans T, Silva AJR. Background subtraction in real applications: challenges, current models and future directions.
Computer Science Review 2020;35:100204. [DOI: 10.1016/j.cosrev.2019.100204]
12. Cristani M, Farenzena M, Bloisi D, Murino V. Background subtraction for automated multisensor surveillance: a comprehensive review.
EURASIP J Adv Signal Process 2010;2010. [DOI: 10.1155/2010/343057]
13. Javed S, Narayanamurthy P, Bouwmans T, Vaswani N. Robust PCA and robust subspace tracking: a comparative evaluation. In: 2018 IEEE
Statistical Signal Processing Workshop (SSP). Freiburg im Breisgau, Germany; 2018. pp. 836–40. [DOI: 10.1109/SSP.2018.8450718]
14. Mandal M, Vipparthi SK. An Empirical Review of Deep Learning Frameworks for Change Detection: Model Design, Experimental
Frameworks, Challenges and Research Needs. IEEE Transactions on Intelligent Transportation Systems 2021:Article in Press. [DOI: