Page 100 - Read Online
P. 100
Yu et al. Intell Robot 2022;2:180-99 https://dx.doi.org/10.20517/ir.2022.10 Page 198
2022;17:026009. DOI PubMed
22. Liao P, Zhang S, Sun D. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
Bioinspir Biomim 2018;13:036007. DOI PubMed
23. Coral W, Rossi C, Curet OM, Castro D. Design and assessment of a flexible fish robot actuated by shape memory alloys. Bioinspir
Biomim 2018;13:056009. DOI PubMed
24. Zhu J, White C, Wainwright DK, Di Santo V, Lauder GV, Bart-Smith H. Tuna robotics: a high-frequency experimental platform
exploring the performance space of swimming fishes. Sci Robot 2019;4:eaax4615. DOI PubMed
25. Chen B, Jiang H. Body stiffness variation of a tensegrity robotic fish using antagonistic stiffness in a kinematically singular
configuration. IEEE Trans Robot 2021;37:1712-27. DOI
26. Li G, Chen X, Zhou F, et al. Self-powered soft robot in the mariana trench. Nature 2021;591:66-71. DOI PubMed
27. Yurugi M, Shimanokami M, Nagai T, Shintake J, Ikemoto Y. Cartilage structure increases swimming efficiency of underwater robots.
Sci Rep 2021;11:11288. DOI PubMed PMC
28. Ma H, Cai Y, Wang Y, Bi S, Gong Z. A biomimetic cownose ray robot fish with oscillating and chordwise twisting flexible pectoral
fins. IR 2015;42:214-21. DOI
29. Zhang Z, Yang T, Zhang T, et al. Global vision-based formation control of soft robotic fish swarm. Soft Robot 2021;8:310-8. DOI
PubMed
30. Li T, Li G, Liang Y, et al. Fast-moving soft electronic fish. Sci Adv 2017;3:e1602045. DOI PubMed PMC
31. Li Z, Ge L, Xu W, Du Y. Turning characteristics of biomimetic robotic fish driven by two degrees of freedom of pectoral fins and
flexible body/caudal fin. InterJ Adv Rob Syst 2018;15:172988141774995. DOI
32. Zhong Y, Li Z, Du R. Robot fish with two-DOF pectoral fins and a wire-driven caudal fin. Advanced Robotics 2018;32:25-36. DOI
33. Lighthill MJ. Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 1970;44:265. DOI
34. Lighthill MJ. Large-amplitude elongated-body theory of fish locomotion. Proc R Soc Lond B 1971;179:125-38. DOI
35. Tong BG, Zhuang LX. Hydrodynamic Model for Fish’s Undulatory Motion and Its Applications. Chin J Nat 1998;1:1-7.
36. Wu TY. Swimming of a waving plate. J Fluid Mech 1961;10:321-44. DOI
37. Wang P, Xu BZ, Lou BD, et al. Optimization and experimentation on the kinematic model of bionic robotic fish. CAAI Trans Intell
Syst 2017;12:196-201. DOI
38. Kopman V, Laut J, Acquaviva F, Rizzo A, Porfiri M. Dynamic modeling of a robotic fish propelled by a compliant tail. IEEE J
Oceanic Eng 2015;40:209-21. DOI
39. Zhan JM, Gong YJ, Li TZ. Gliding locomotion of manta rays, killer whales and swordfish near the water surface. Sci Rep 2017;7:406.
DOI PubMed PMC
40. Liu G, Ren Y, Dong H, Akanyeti O, Liao JC, Lauder GV. Computational analysis of vortex dynamics and performance enhancement
due to body-fin and fin-fin interactions in fish-like locomotion. J Fluid Mech 2017;829:65-88. DOI
41. Han P, Lauder GV, Dong HB. Hydrodynamics of median-fin interactions in fish-like locomotion: effects of fin shape and movement.
Physics Fluids 2020;32:011902. DOI
42. Macias MM, Souza IF, Brasil Junior AC, Oliveira TF. Three-dimensional viscous wake flow in fish swimming - A CFD study.
Mechanics Research Communications 2020;107:103547. DOI
43. Zhu Y, Tian FB, Young J, Liao JC, Lai JCS. A numerical study of fish adaption behaviors in complex environments with a deep
reinforcement learning and immersed boundary-lattice Boltzmann method. Sci Rep 2021;11:1691. DOI PubMed PMC
44. Behbahani SB, Tan X. Design and modeling of flexible passive rowing joint for robotic fish pectoral fins. IEEE Trans Robot
2016;32:1119-32. DOI
45. Xin Z, Wu C. Vorticity dynamics and control of the turning locomotion of 3D bionic fish. SAGE 2018;232:2524-35. DOI
46. Liu G, Liu S, Xie Y, Leng D, Li G. The analysis of biomimetic caudal fin propulsion mechanism with CFD. Appl Bionics Biomech
2020;2020:7839049. DOI PubMed PMC
47. Wu C, Wang L. Numerical simulations of self-propelled swimming of 3D bionic fish school. Sci China Ser E-Technol Sci
2009;52:658-69. DOI
48. Khalid MSU, Akhtar I, Dong H. Hydrodynamics of a tandem fish school with asynchronous undulation of individuals. Journal of
Fluids and Structures 2016;66:19-35. DOI
49. Doi K, Takagi T, Mitsunaga Y, Torisawa S. Hydrodynamical effect of parallelly swimming fish using computational fluid dynamics
method. PLoS One 2021;16:e0250837. DOI PubMed PMC
50. Li L, Nagy M, Graving JM, Bak-Coleman J, Xie G, Couzin ID. Vortex phase matching as a strategy for schooling in robots and in fish.
Nat Commun 2020;11:5408. DOI PubMed PMC
51. Li L, Ravi S, Xie G, Couzin ID. Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-
by-side swimming in fish. Proc Math Phys Eng Sci 2021;477:20200810. DOI PubMed PMC
52. Li S, Li C, Xu L, Yang W, Chen X. Numerical simulation and analysis of fish-like robots swarm. Applied Sciences 2019;9:1652. DOI
53. Li L, Zheng X, Mao R, Xie G. Energy saving of schooling robotic fish in three-dimensional formations. IEEE Robot Autom Lett
2021;6:1694-9. DOI
54. Zhang H, Wang W, Zhou Y, et al. CSMA/CA-based electrocommunication system design for underwater robot groups. IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) 2017:2415-20. DOI
55. Zhai Y, Zheng X, Xie G. Fish lateral line inspired flow sensors and flow-aided control: a review. J Bionic Eng 2021;18:264-91. DOI