Page 100 - Read Online
P. 100

Yu et al. Intell Robot 2022;2:180-99  https://dx.doi.org/10.20517/ir.2022.10    Page 198

                   2022;17:026009.  DOI  PubMed
               22.      Liao P, Zhang S, Sun D. A dual caudal-fin miniature robotic fish with an integrated oscillation and jet propulsive mechanism.
                   Bioinspir Biomim 2018;13:036007.  DOI  PubMed
               23.      Coral W, Rossi C, Curet OM, Castro D. Design and assessment of a flexible fish robot actuated by shape memory alloys. Bioinspir
                   Biomim 2018;13:056009.  DOI  PubMed
               24.      Zhu J, White C, Wainwright DK, Di Santo V, Lauder GV, Bart-Smith H. Tuna robotics: a high-frequency experimental platform
                   exploring the performance space of swimming fishes. Sci Robot 2019;4:eaax4615.  DOI  PubMed
               25.      Chen B, Jiang H. Body stiffness variation of a tensegrity robotic fish using antagonistic stiffness in a kinematically singular
                   configuration. IEEE Trans Robot 2021;37:1712-27.  DOI
               26.      Li G, Chen X, Zhou F, et al. Self-powered soft robot in the mariana trench. Nature 2021;591:66-71.  DOI  PubMed
               27.      Yurugi M, Shimanokami M, Nagai T, Shintake J, Ikemoto Y. Cartilage structure increases swimming efficiency of underwater robots.
                   Sci Rep 2021;11:11288.  DOI  PubMed  PMC
               28.      Ma H, Cai Y, Wang Y, Bi S, Gong Z. A biomimetic cownose ray robot fish with oscillating and chordwise twisting flexible pectoral
                   fins. IR 2015;42:214-21.  DOI
               29.      Zhang Z, Yang T, Zhang T, et al. Global vision-based formation control of soft robotic fish swarm. Soft Robot 2021;8:310-8.  DOI
                   PubMed
               30.      Li T, Li G, Liang Y, et al. Fast-moving soft electronic fish. Sci Adv 2017;3:e1602045.  DOI  PubMed  PMC
               31.      Li Z, Ge L, Xu W, Du Y. Turning characteristics of biomimetic robotic fish driven by two degrees of freedom of pectoral fins and
                   flexible body/caudal fin. InterJ Adv Rob Syst 2018;15:172988141774995.  DOI
               32.      Zhong Y, Li Z, Du R. Robot fish with two-DOF pectoral fins and a wire-driven caudal fin. Advanced Robotics 2018;32:25-36.  DOI
               33.      Lighthill MJ. Aquatic animal propulsion of high hydromechanical efficiency. J Fluid Mech 1970;44:265.  DOI
               34.      Lighthill MJ. Large-amplitude elongated-body theory of fish locomotion. Proc R Soc Lond B 1971;179:125-38.  DOI
               35.      Tong BG, Zhuang LX. Hydrodynamic Model for Fish’s Undulatory Motion and Its Applications. Chin J Nat 1998;1:1-7.
               36.      Wu TY. Swimming of a waving plate. J Fluid Mech 1961;10:321-44.  DOI
               37.      Wang P, Xu BZ, Lou BD, et al. Optimization and experimentation on the kinematic model of bionic robotic fish. CAAI Trans Intell
                   Syst 2017;12:196-201.  DOI
               38.      Kopman V, Laut J, Acquaviva F, Rizzo A, Porfiri M. Dynamic modeling of a robotic fish propelled by a compliant tail. IEEE J
                   Oceanic Eng 2015;40:209-21.  DOI
               39.      Zhan JM, Gong YJ, Li TZ. Gliding locomotion of manta rays, killer whales and swordfish near the water surface. Sci Rep 2017;7:406.
                   DOI  PubMed  PMC
               40.      Liu G, Ren Y, Dong H, Akanyeti O, Liao JC, Lauder GV. Computational analysis of vortex dynamics and performance enhancement
                   due to body-fin and fin-fin interactions in fish-like locomotion. J Fluid Mech 2017;829:65-88.  DOI
               41.      Han P, Lauder GV, Dong HB. Hydrodynamics of median-fin interactions in fish-like locomotion: effects of fin shape and movement.
                   Physics Fluids 2020;32:011902.  DOI
               42.      Macias MM, Souza IF, Brasil Junior AC, Oliveira TF. Three-dimensional viscous wake flow in fish swimming - A CFD study.
                   Mechanics Research Communications 2020;107:103547.  DOI
               43.      Zhu Y, Tian FB, Young J, Liao JC, Lai JCS. A numerical study of fish adaption behaviors in complex environments with a deep
                   reinforcement learning and immersed boundary-lattice Boltzmann method. Sci Rep 2021;11:1691.  DOI  PubMed  PMC
               44.      Behbahani SB, Tan X. Design and modeling of flexible passive rowing joint for robotic fish pectoral fins. IEEE Trans Robot
                   2016;32:1119-32.  DOI
               45.      Xin Z, Wu C. Vorticity dynamics and control of the turning locomotion of 3D bionic fish. SAGE 2018;232:2524-35.  DOI
               46.      Liu G, Liu S, Xie Y, Leng D, Li G. The analysis of biomimetic caudal fin propulsion mechanism with CFD. Appl Bionics Biomech
                   2020;2020:7839049.  DOI  PubMed  PMC
               47.      Wu C, Wang L. Numerical simulations of self-propelled swimming of 3D bionic fish school. Sci China Ser E-Technol Sci
                   2009;52:658-69.  DOI
               48.      Khalid MSU, Akhtar I, Dong H. Hydrodynamics of a tandem fish school with asynchronous undulation of individuals. Journal of
                   Fluids and Structures 2016;66:19-35.  DOI
               49.      Doi K, Takagi T, Mitsunaga Y, Torisawa S. Hydrodynamical effect of parallelly swimming fish using computational fluid dynamics
                   method. PLoS One 2021;16:e0250837.  DOI  PubMed  PMC
               50.      Li L, Nagy M, Graving JM, Bak-Coleman J, Xie G, Couzin ID. Vortex phase matching as a strategy for schooling in robots and in fish.
                   Nat Commun 2020;11:5408.  DOI  PubMed  PMC
               51.      Li L, Ravi S, Xie G, Couzin ID. Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-
                   by-side swimming in fish. Proc Math Phys Eng Sci 2021;477:20200810.  DOI  PubMed  PMC
               52.      Li S, Li C, Xu L, Yang W, Chen X. Numerical simulation and analysis of fish-like robots swarm. Applied Sciences 2019;9:1652.  DOI
               53.      Li L, Zheng X, Mao R, Xie G. Energy saving of schooling robotic fish in three-dimensional formations. IEEE Robot Autom Lett
                   2021;6:1694-9.  DOI
               54.      Zhang H, Wang W, Zhou Y, et al. CSMA/CA-based electrocommunication system design for underwater robot groups. IEEE/RSJ
                   International Conference on Intelligent Robots and Systems (IROS) 2017:2415-20.  DOI
               55.      Zhai Y, Zheng X, Xie G. Fish lateral line inspired flow sensors and flow-aided control: a review. J Bionic Eng 2021;18:264-91.  DOI
   95   96   97   98   99   100   101   102   103   104   105