Page 17 - Read Online
P. 17

Page 12                           Chazhoor et al. Intell Robot 2022;2:1-19  https://dx.doi.org/10.20517/ir.2021.15

               Table 5. The mean training and validation accuracies and losses for Resnet-50 architecture for 20 epochs
                                                        Mean Resnet-50 values
                Epoch
                        Training accuracy     Validation accuracy      Training loss   Validation loss
                1       0.5515                0.6706                   1.12794         1.04068
                2       0.69346               0.70782                  0.81024         0.96718
                3       0.7455                0.7691                   0.66772         0.86036
                4       0.77918               0.76568                  0.5758          0.82058
                5       0.80062               0.77648                  0.52012         0.66052
                6       0.8256                0.75932                  0.44886         0.85278
                7       0.83992               0.74364                  0.42794         1.16314
                8       0.87704               0.82598                  0.32214         0.60218
                9       0.89198               0.82254                  0.2835          0.6571
                10      0.90986               0.82942                  0.24506         0.62152
                11      0.90324               0.83382                  0.2566          0.58042
                12      0.91498               0.83234                  0.23156         0.63032
                13      0.91182               0.81626                  0.23618         0.6429
                14      0.91476               0.83726                  0.23086         0.65462
                15      0.9151                0.83484                  0.2235          0.6636
                16      0.91464               0.82894                  0.22348         0.70444
                17      0.91684               0.8343                   0.21748         0.65494
                18      0.91684               0.83776                  0.21546         0.6189
                19      0.91708               0.83482                  0.22578         0.68982
                20      0.91352               0.83922                  0.22412         0.61236


               Table 6. The mean training and validation accuracies and losses for ResNeXt architecture for 20 epochs
                                                         Mean ResNeXt values
                Epoch
                        Training accuracy     Validation accuracy      Training loss   Validation loss
                1       0.57454               0.71078                  1.09714         0.97576
                2       0.69518               0.74312                  0.8304          0.87308
                3       0.752                 0.67498                  0.66784         1.3998
                4       0.79228               0.76764                  0.57174         0.93114
                5       0.81336               0.78234                  0.52164         0.7225
                6       0.83306               0.83136                  0.4542          0.70478
                7       0.84494               0.81374                  0.42144         0.7807
                8       0.88366               0.8564                   0.30548         0.5644
                9       0.89836               0.85442                  0.28038         0.64594
                10      0.90642               0.85294                  0.26156         0.62974
                11      0.90826               0.85834                  0.2503          0.65006
                12      0.9145                0.85                     0.2385          0.6518
                13      0.9084                0.84118                  0.2411          0.64972
                14      0.91084               0.8544                   0.24424         0.59668
                15      0.91316               0.85246                  0.2417          0.55656
                16      0.92564               0.84854                  0.2097          0.58186
                17      0.91156               0.85882                  0.23282         0.58778
                18      0.916                 0.85688                  0.22358         0.63122
                19      0.91598               0.84658                  0.223           0.62936
                20      0.92014               0.85246                  0.21606         0.65276
   12   13   14   15   16   17   18   19   20   21   22