Page 82 - Read Online
P. 82

Ji et al. Intell Robot 2021;1(2):151-75  https://dx.doi.org/10.20517/ir.2021.14     Page 175

               110.      Liu Y, Sun X, Pang JHL. (, March). A YOLOv3-based deep learning application research for condition monitoring of rail thermite
                    welded joints. Proceedings of the 2020 2nd International Conference on Image, Video and Signal Processing; 2020 Mar; New York,
                    NY, USA. Association for Computing Machinery; 2020. p. 33-8.  DOI
               111.      Aydin I, Akin E, Karakose M. Defect classification based on deep features for railway tracks in sustainable transportation. Appl Soft
                    Comput 2021;111:107706.  DOI
               112.      Zheng D, Li L, Zheng S, et al. A defect detection method for rail surface and fasteners based on deep convolutional neural network.
                    Comput Intell Neurosci 2021;2021:2565500.  DOI  PubMed  PMC
               113.      Wang W, Hu W, Wang W, et al. Automated crack severity level detection and classification for ballastless track slab using deep
                    convolutional neural network. Autom Constr 2021;124:103484.  DOI
               114.      Chen Z, Wang Q, Yang K, et al. Deep learning for the detection and recognition of rail defects in ultrasound B-scan images. Transp
                    Res Rec 2021;2675:888-901.  DOI
               115.      Liu J, Ma Z, Qiu Y, Ni X, Shi B, Liu H. Four discriminator cycle-consistent adversarial network for improving railway defective
                    fastener inspection. IEEE Trans Intell Transport Syst 2021.  DOI
               116.      Wu Y, Qin Y, Qian Y, Guo F, Wang Z, Jia L. Hybrid deep learning architecture for rail surface segmentation and surface defect
                    detection. Computer aided Civil Eng 2022;37:227-44.  DOI
               117.      Wan Z, Chen S. Railway tracks defects detection based on deep convolution neural networks. In: Liang Q, Wang W, Mu J, Liu X, Na
                    Z, Cai X, editors. Artificial intelligence in China. Singapore: Springer; 2021. p. 119-29.  DOI
               118.      Ye T, Zhang X, Zhang Y, Liu J. Railway traffic object detection using differential feature fusion convolution neural network. IEEE
                    Trans Intell Transport Syst 2021;22:1375-87.  DOI
               119.      Chen M, Zhai W, Zhu S, Xu L, Sun Y. Vibration-based damage detection of rail fastener using fully convolutional networks. Veh
                    Syst Dyn 2021.  DOI
               120.      Tai JJ, Innocente MS, Mehmood O. FasteNet: a fast railway fastener detector. In: Yang X, Sherratt S, Dey N, Joshi A, editors.
                    Proceedings of Sixth International Congress on Information and Communication Technology. Singapore: Springer; 2022. p. 767-77.
                    DOI
               121.      Guo F, Qian Y, Rizos D, Suo Z, Chen X. Automatic rail surface defects inspection based on mask R-CNN. Transp Res Rec
                    2021;2675:655-68.  DOI
   77   78   79   80   81   82   83   84   85   86   87