Page 80 - Read Online
P. 80

Ji et al. Intell Robot 2021;1(2):151-75  https://dx.doi.org/10.20517/ir.2021.14     Page 173

                    2017;39:640-51.  DOI  PubMed
               55.       Noh H, Hong S, Han B. Learning deconvolution network for semantic segmentation. Proceedings of 2015 IEEE International
                    Conference on Computer Vision (ICCV); 2015 Dec 7-13; Santiago, Chile. IEEE; 2015. p. 1520-8.  DOI
               56.       Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. DeepLab: semantic image segmentation with deep convolutional nets,
                    atrous convolution, and fully connected CRFs. IEEE Trans Pattern Anal Mach Intell 2018;40:834-48.  DOI  PubMed
               57.       Liu W, Rabinovich A, Berg AC. Parsenet: looking wider to see better. arXiv preprint arXiv:1506.04579.
               58.       Yu F, Koltun V. Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122.
               59.       Zhao H, Shi J, Qi X, Wang X, Jia J. Pyramid scene parsing network. Proceedings of 2017 IEEE Conference on Computer Vision and
                    Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI, USA. IEEE; 2017. p. 6230-9.  DOI
               60.       Fink O, Zio E, Weidmann U. Predicting component reliability and level of degradation with complex-valued neural networks.
                    Reliability Engineering & System Safety 2014;121:198-206.  DOI
               61.       Giben X, Patel VM, Chellappa R. Material classification and semantic segmentation of railway track images with deep convolutional
                    neural networks. Proceedings of 2015 IEEE International Conference on Image Processing (ICIP); 2015 Sep 27-30; Quebec City, QC,
                    Canada. IEEE; 2015. p. 621-5.  DOI
               62.       Faghih-Roohi S, Hajizadeh S, Núnez A, Babuska R, De Schutter B. Deep convolutional neural networks for detection of rail surface
                    defects. Proceedings of 2016 International joint conference on neural networks (IJCNN); 2016 Jul 24-29; Vancouver, BC, Canada.
                    IEEE; 2016. p. 2584-9.  DOI
               63.       Bruin T, Verbert K, Babuska R. Railway track circuit fault diagnosis using recurrent neural networks. IEEE Trans Neural Netw Learn
                    Syst 2017;28:523-33.  DOI  PubMed
               64.       Gibert X, Patel VM, Chellappa R. Deep multitask learning for railway track inspection. IEEE Trans Intell Transport Syst
                    2017;18:153-64.  DOI
               65.       Zhang X, Wang K, Wang Y, Shen Y, Hu H. An improved method of rail health monitoring based on CNN and multiple acoustic
                    emission events. Proceedings of 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC); 2017
                    May 22-25; Turin, Italy. IEEE; 2017. p. 1-6.  DOI
               66.       Rao  DJ,  Mittal  S,  Ritika  S.  Siamese  neural  networks  for  one-shot  detection  of  railway  track  switches.  arXiv  preprint
                    arXiv:1712.08036.
               67.       Mittal S, Rao D. Vision based railway track monitoring using deep learning. arXiv preprint arXiv:1711.06423.  DOI
               68.       Santur Y, Karaköse M, Akin E. A new rail inspection method based on deep learning using laser cameras. Proceedings of 2017
                    International Artificial Intelligence and Data Processing Symposium (IDAP); 2017 Sep 16-17; Malatya, Turkey. IEEE; 2017. p. 1-6.
                    DOI
               69.       Santur Y, Karaköse M, Akin E. An adaptive fault diagnosis approach using pipeline implementation for railway inspection. Turk J
                    Elec Eng & Comp Sci 2018;26:987-98.  DOI
               70.       Huang H, Xu J, Zhang J, Wu Q, Kirsch C. Railway infrastructure defects recognition using fine-grained deep convolutional neural
                    networks. Proceedings of 2018 Digital Image Computing: Techniques and Applications (DICTA); 2018 Dec 10-13; Canberra, ACT,
                    Australia. IEEE; 2018. p. 1-8.  DOI
               71.       Zhang X, Zou Z, Wang K, et al. A new rail crack detection method using LSTM network for actual application based on AE
                    technology. Appl Acoust 2018;142:78-86.  DOI
               72.       Ye T, Wang B, Song P, Li J. Automatic railway traffic object detection system using feature fusion refine neural network under
                    shunting mode. Sensors (Basel) 2018;18:1916.  DOI
               73.       Kang G, Gao S, Yu L, Zhang D. Deep architecture for high-speed railway insulator surface defect detection: denoising autoencoder
                    with multitask learning. IEEE Trans Instrum Meas 2019;68:2679-90.  DOI
               74.       Liang Z, Zhang H, Liu L, He Z, Zheng K. Defect detection of rail surface with deep convolutional neural networks. Proceedings of
                    2018 13th World Congress on Intelligent Control and Automation (WCICA); 2018 Jul 4-8; Changsha, China. IEEE; 2018. p. 1317-
                    22.  DOI
               75.       Shang L, Yang Q, Wang J, Li S, Lei W. Detection of rail surface defects based on CNN image recognition and classification.
                    Proceedings of 2018 20th International Conference on Advanced Communication Technology (ICACT); 2018 Feb 11-14;
                    Chuncheon, Korea (South). IEEE; 2018. p. 45-51.  DOI
               76.       Wang S, Dai P, Du X, Gu Z, Ma Y. Rail fastener automatic recognition method in complex background. Proceedings of Tenth
                    International Conference on Digital Image Processing (ICDIP 2018); 2018 Aug 9; Shanghai, China. International Society for Optics
                    and Photonics; 2018. p. 1080625.  DOI
               77.       Yanan S, Hui Z, Li L, Hang Z. Rail surface defect detection method based on yolov3 deep learning networks. Proceedings of 2018
                    Chinese Automation Congress (CAC); 2018 Nov 30-Dec 2; Xi’an, China. IEEE; 2018. p. 1563-8.2.  DOI
               78.       Xu X, Lei Y, Yang F. Railway subgrade defect automatic recognition method based on improved faster R-CNN. Sci Programming
                    2018;2018:1-12.  DOI
               79.       Jamshidi A, Hajizadeh S, Su Z, et al. A decision support approach for condition-based maintenance of rails based on big data
                    analysis. Transp Res Part C Emerg Technol 2018;95:185-206.  DOI
               80.       Bukhsh Z, Saeed A, Stipanovic I, Doree AG. Predictive maintenance using tree-based classification techniques: a case of railway
                    switches. Transp Res Part C Emerg Technol 2019;101:35-54.  DOI
               81.       James A, Jie W, Xulei Y, et al. Tracknet - a deep learning based fault detection for railway track inspection. Proceedings of 2018
                    International Conference on Intelligent Rail Transportation (ICIRT); 2018 Dec 12-14; Singapore. IEEE; 2018. p. 1-5.  DOI
               82.       Peng X, Jin X. Rail suspension system fault detection using deep semi-supervised feature extraction with one-class data.
   75   76   77   78   79   80   81   82   83   84   85