Page 33 - Read Online
P. 33
Page 332 He et al. Intell. Robot. 2025, 5(2), 313-32 I http://dx.doi.org/10.20517/ir.2025.16
IEEE Trans. Image Process. 2021, 30, 6544–56. DOI
53. Ruan, D.; Yan, Y.; Lai, S.; Chai, Z.; Shen, C.; Wang, H. Feature decomposition and reconstruction learning for effective facial expression
recognition. arXiv 2021, arXiv:2104.05160. Available online: https://doi.org/10.48550/arXiv.2104.05160. (accessed on 24 Mar 2025)
54. Ma, F.; Sun, B.; Li, S. Facial expression recognition with visual transformers and attentional selective fusion. IEEE Trans. Affect. Comput.
2023, 14, 1236–48. DOI
55. Ruan, D.; Mo, R.; Yan, Y.; Chen, S.; Xue, J. H.; Wang, H. Adaptive deep disturbance-disentangled learning for facial expression
recognition. Int. J. Comput. Vis. 2022, 130, 455–77. DOI
56. Lv, Z. Facial expression recognition method based on dual-branch fusion network with noisy labels. In: 2024 IEEE 7th Advanced
Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China. Mar 15-17, 2024. IEEE, 2024; pp.
1608–12. DOI
57. Miao, S.; Xu, H.; Han, Z.; Zhu, Y. Recognizing facial expressions using a shallow convolutional neural network. IEEE Access 2019, 7,
78000–11. DOI
58. Xie, W.; Shen, L.; Duan, J. Adaptive weighting of handcrafted feature losses for facial expression recognition. IEEE Trans. Cybern. 2021,
51, 2787–800. DOI
59. Tang, Y.; Zhang, X.; Hu, X.; Wang, S.; Wang, H. Facial expression recognition using frequency neural network. IEEE Trans. Image
Process. 2021, 30, 444–57. DOI
60. Li, H.; Wang, N.; Yu, Y.; Yang, X.; Gao, X. LBAN-IL: a novel method of high discriminative representation for facial expression
recognition. Neurocomputing 2021, 432, 159–69. DOI
61. Huang, C. Combining convolutional neural networks for emotion recognition. In: 2017 IEEE MIT Undergraduate Research Technology
Conference (URTC), Cambridge, USA. Nov 03-05, 2017. IEEE, 2017; p. 1-4. DOI
62. Yalçin, N.; Alisawi, M. Introducing a novel dataset for facial emotion recognition and demonstrating significant enhancements in deep
learning performance through pre-processing techniques. Heliyon 2024, 10, e38913. DOI
63. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
Salt Lake City, USA. Jun 18-23, 2018. IEEE, 2018; pp. 7132-41. DOI
64. Woo, S.; Park, J.; Lee, J. Y.; Kweon, I. S. CBAM: convolutional block attention module. In: Computer Vision - ECCV 2018. Springer,
Cham; pp. 3-19. DOI
65. Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: efficient channel attention for deep convolutional neural networks. In: 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, USA. Jun 13-19, 2020. IEEE, 2020; pp. 11531–
9. DOI
66. Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.; Batra, D. Grad-CAM: visual explanations from deep networks via
gradient-based localization. In: 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy. Oct 22-29, 2017. IEEE,
2017; pp. 618-26. DOI

