Page 74 - Read Online
P. 74

Page 14 of 15                     Ma et al. Intell Robot 2023;3(4):581-95  I http://dx.doi.org/10.20517/ir.2023.33


               Performed process guidance responsibility for the planning and execution of the study and the evolution of
               overarching research aims, critical review, and material support. Review and revise the original draft: Gong H

               Availability of data and materials
               Not applicable.

               Financial support and sponsorship
               None.

               Conflicts of interest
               All authors declared that there are no conflicts of interest.

               Ethical approval and consent to participate
               Not applicable.


               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2023.



               REFERENCES
               1.  Zhang C, Song D, Huang C, Swami A, Chawla NV. Heterogeneous graph neural network. In: Proceedings of the 25th ACM SIGKDD
                  International Conference on Knowledge Discovery & Data Mining. Anchorage, AK, USA: ACM; 2019. pp. 793–803. DOI
               2.  Fu X, Zhang J, Meng Z, King I. MAGNN: Metapath aggregated graph neural network for heterogeneous graph embedding. In: WWW
                  ’20: The Web Conference 2020. Taipei, Taiwan: ACM / IW3C2; 2020. pp. 2331–41. DOI
               3.  Jing Y, Yang Y, Wang X, Song M, Tao D. Amalgamating knowledge from heterogeneous graph neural networks. In: Proceedings of the
                  IEEE Conference on Computer Vision and Pattern Recognition. Online: Computer Vision Foundation / IEEE; 2021. pp. 15709–18. DOI
               4.  Zhao J, Wang X, Shi C, et al. Heterogeneous graph structure learning for graph neural networks. In: Proceedings of the 35th AAAI
                  Conference on Artificial Intelligence. Online: AAAI Press; 2021. pp. 4697–705. DOI
               5.  Liu Z, Chen C, Yang X, et al. Heterogeneous gGraph neural networks for malicious account detection. In: Proceedings of the 27th ACM
                  International Conference on Information and Knowledge Management. Torino, Italy: ACM; 2018. pp. 2077–85. DOI
               6.  Jin D, Huo C, Liang C, Yang L. Heterogeneous graph neural network via attribute completion. In: WWW ’21: The Web Conference
                  2021. Online: ACM / IW3C2; 2021. pp. 391–400. DOI
               7.  Guo J, Yang C. Learning power allocation for multi-cell-multi-user systems with heterogeneous graph neural networks. IEEE Trans
                  Wireless Commun 2021;21:884–97. DOI
               8.  Bhatta K, Chang Q. An integrated control strategy for simultaneous robot assignment, tool change and preventive maintenance scheduling
                  using Heterogeneous Graph Neural Network. Robot Comput Int Manuf 2023;84:102594. DOI
               9.  Ru J, Hao D, Zhang X, Xu H, Jia Z. Research on a hybrid neural network task assignment algorithm for solving multi-constraint hetero-
                  geneous autonomous underwater robot swarms. Front Neurorobot 2023;16:1055056. DOI
               10. Zhang X, Zhao H, Xiong J,et al. Scalable Power control/beamforming in heterogeneous wireless networks with graph neural networks.
                  In: Proceedings of the IEEE Global Communications Conference. Madrid, Spain: IEEE; 2021. pp. 1–6. DOI
               11. Wei Y, Fu X, Sun Q, et al. Heterogeneous graph neural network for privacy-preserving recommendation. In: Proceedings of the IEEE
                  International Conference on Data Mining. Orlando, FL, USA: IEEE; 2022. pp. 528–37. DOI
               12. Barbosa VC, Huang HK. Static task allocation in heterogeneous distributed systems. COPPE, Universidade Federal do Rio de Janeiro,
                  ES-149/88 (June 1988) 1988. DOI
               13. Wang Z, Liu C, Gombolay M. Heterogeneous graph attention networks for scalable multi-robot scheduling with temporospatial constraints.
                  Auton Robot 2022;46:249-68. DOI
               14. Zeng Q. Characteristic analysis and route optimization of heterogeneous neural network in logistics allocation system. Computationa Int
                  Neuroscience 2022;2022:1713183. DOI
               15. Salcedo-Sanz S, Xu Y, Yao X. Hybrid meta-heuristics algorithms for task assignment in heterogeneous computing systems. Comput
                  Operat Res 2006;33:820–35. DOI
               16. Liu Y, Wang W, Hu Y, et al. Multi-agent game abstraction via graph attention neural network. In: Proceedings of the 34th AAAI Conference
                  on Artificial Intelligence. New York, NY, USA: AAAI Press; 2020. pp. 7211–18. DOI
               17. Yang S, Yang B, Kang Z, Deng L. IHG-MA: Inductive heterogeneous graph multi-agent reinforcement learning for multi-intersection
   69   70   71   72   73   74   75   76   77   78   79