Page 28 - Read Online
P. 28

Zhang et al. Intell. Robot. 2025, 5(2), 333-54  I http://dx.doi.org/10.20517/ir.2025.17  Page 353


               Ethical approval and consent to participate
               Not applicable.

               Consent for publication
               Not applicable.


               Copyright
               © The Author(s) 2025.



               REFERENCES
               1.  Thayabaranathan, T.; Kim, J.; Cadilhac, D. A.; et al. Global stroke statistics 2022. Int. J. Stroke. 2022, 17, 946-56. DOI
               2.  Feigin, V. L.; Forouzanfar, M. H.; Krishnamurthi, R.; et al. Global and regional burden of stroke during 1990-2010: findings from the
                  Global Burden of Disease Study 2010. Lancet 2014, 383, 245-54. DOI
               3.  Peng, L.; Hou, Z. G.; Peng, L.; Luo, L.; Wang, W. Robot assisted rehabilitation of the arm after stroke: prototype design and clinical
                  evaluation. Sci. China Inf. Sci. 2017, 60, 073201. DOI
               4.  Bütefisch, C.; Hummelsheim, H.; Denzler, P.; Mauritz, K. H. Repetitive training of isolated movements improves the outcome of motor
                  rehabilitation of the centrally paretic hand J. Neurol. Sci. 1995, 130, 59-68. DOI
               5.  Lum, P. S.; Burgar, C. G.; Shor, P. C.; Majmundar, M.; Van der Loos, M. Robot-assisted movement training compared with conventional
                  therapy techniques for the rehabilitation of upper-limb motor function after stroke. Arch. Phys. Med. Rehabil. 2002, 83, 952-9. DOI
               6.  Norouzi-Gheidari, N, Archambault, P. S.;, Fung, J. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic
                  review and meta-analysis of the literature J. Rehabil. Res. Dev. 2012, 49, 479-96. DOI
               7.  Sankar, K.; Muthukumar, S. D.; Kannan, P.; Mariappan, S.; Kalidoss, S. Robot-assisted therapies for upper limb stroke rehabilitation: a
                  narrative review. 2024 International Conference on Cognitive Robotics and Intelligent Systems (ICC - ROBINS),Coimbatore, India. Apr
                  17-19, 2024. IEEE, 2024; pp. 750-6. DOI
               8.  Li, G.; Fang, Q.; Xu, T.; Zhao, J.; Cai, H.; Zhu, Y. Inverse kinematic analysis and trajectory planning of a modular upper limb rehabilitation
                  exoskeleton. Technol. Health Care. 2019, 27, 123-32. DOI
               9.  Flash, T.; Meirovitch, Y.; Barliya, A. Models of human movement: trajectory planning and inverse kinematics studies. Robot. Auton.
                  Syst. 2013, 61, 330–9. DOI
               10. Wang, C.; Peng, L.; Hou, Z. G.; et al. Kinematic redundancy analysis during goal-directed motion for trajectory planning of an upper-limb
                  exoskeleton robot. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
                  Berlin, Germany. Jul 23-27, 2019. IEEE, 2019; pp. 5251-5. DOI
               11. Kim, H.; Miller, L. M.; Byl, N.; Abrams, G. M.; Rosen, J. Redundancy resolution of the human arm and an upper limb exoskeleton. IEEE
                  Trans. Biomed. Eng. 2012, 59, 1770–9. DOI
               12. Secco, E. L.; Visioli, A.; Magenes, G. Minimum jerk motion planning for a prosthetic finger. J. Robot. Syst. 2004, 21, 361-8. DOI
               13. Ghobadi, M.; Sosnoff, J.; Kesavadas, T.; Esfahani, E. T. Using mini minimum jerk model for human activity classification in home-based
                  monitoring. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore. Aug 11-14, 2015. IEEE, 2015. pp.
                  909–12. DOI
               14. Zadravec, M.; Matjačić, Z. Development of optimization-based simulation tool for trajectory planning in planar arm reaching after stroke.
                  In: 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Rome, Italy. Jun
                  24-27, 2012. IEEE, 2012. pp. 1446–50. DOI
               15. Zadravec, M.; Matjačić, Z. Planar arm movement trajectory formation: An optimization based simulation study. Biocybern. Biomed.
                  2013, 33, 106–17. DOI
               16. Friedman, J.; Flash, T. Trajectory of the index finger during grasping. Exp. Brain. Res. 2009, 196, 497–509. DOI
               17. Averta, G.; Della Santina, C.; Valenza, G.; Bicchi, A.; Bianchi, M. Exploiting upper-limb functional principal components for human-like
                  motion generation of anthropomorphic robots. J. Neuroeng. Rehabil. 2020, 17, 63. DOI
               18. Li, Z.; Zuo, W.; Li, S. Zeroing dynamics method for motion control of industrial upper-limb exoskeleton system with minimal potential
                  energy modulation. Measurement. 2020, 163, 107964. DOI
               19. Huang, Y.; Jia, L.; Chen, J.; Zheng, J.; Guo, Y.; Tao, Y. A novel path planning algorithm considering the maximum deflection angle of
                  joint. IEEE Access. 2021, 9, 115777-87. DOI
               20. Wang, C.; Peng, L.; Hou, Z. G. A control framework for adaptation of training task and robotic assistance for promoting motor learning
                  with an upper limb rehabilitation robot. IEEE Trans. Syst. Man. Cybern. Syst. 2022, 52, 7737-47. DOI
               21. Chakravorty, S.; Kumar, S. Generalized sampling based motion planners with application to nonholonomic systems. In: 2009 IEEE
                  International Conference on Systems, Man and Cybernetics, San Antonio, USA. Oct 11-14, 2009. IEEE, 2009. pp. 4077-82. DOI
               22. Bakaev, V. S.; Goloburdin, N. V.; Kulagin, K. A.; Anisimov, R. O. Trajectory planning of a manipulator robot in joints space. In: 2022
                  International Conference on Information, Control, and Communication Technologies (ICCT), Astrakhan, Russian Federation. Oct 03-07,
                  2022. IEEE, 2022. pp. 1-5. DOI
               23. Sabbaghi, E.; Bahrami, M.; Ghidary, S. S. Learning of gestures by imitation using a monocular vision system on a humanoid robot. In:
   23   24   25   26   27   28   29   30   31   32   33