Page 32 - Read Online
P. 32
Li et al. Intell Robot 2021;1(1):58-83 I http://dx.doi.org/10.20517/ir.2021.08 Page 82
tional Conference on Robotics and Biomimetics (ROBIO);2019 Dec 68; Dali, China. IEEE; 2019. pp. 1803–8.
68. Yu Z, Tao J, Xiong J, Yang SX. Design and analysis of path planning for robotic fish based on neural dynamics model. Int J Rob Autom
2021;36.
69. Yan M, Zhu D, Yang SX. A novel 3D bioinspired neural network model for the path planning of an AUV in underwater environments.
Intelligent Automation Soft Computing 2013;19:555–66.
70. Zhu D, Yang SX. Bioinspired neural networkbased optimal path planning for UUVs under the effect of ocean currents. IEEE Trans
Veh Technol 2021:1–1.
71. Zhu D, Li W, Yan M, Yang SX. The path planning of AUV based on DS information fusion map building and bioinspired neural
network in unknown dynamic environment. Int J Adv Robot Syst 2014;11:34.
72. Cao X, Peng J. A potential field bioinspired neural network control algorithm for AUV path planning. In: 2018 IEEE In
ternational Conference on Information and Automation (ICIA); 2018 Aug 1113; Fujian, China. IEEE; 2018. pp. 1427–32.
73. Cao X, Chen L, Guo L, Han W. AUV global security path planning based on a potential field bioInspired neural network in underwater
environment. Intelligent Automation & Soft Computing 2021;27:391–407.
74. Zhu A, Yang SX. A neural network approach to dynamic task assignment of multirobots. IEEE Trans Neural Netw 2006;17:1278–87.
75. Zhu A, Yang SX. An improved SOMbased approach to dynamic task assignment of multirobots. In: 2010 8th World Congress on
Intelligent Control and Automation; 2010 Jul 79; Jinan, China. IEEE; 2010. pp. 2168–73.
76. Yi X, Zhu A, Yang SX, Luo C. A bioinspired approach to task assignment of swarm robots in 3D dynamic environments. IEEE Trans
Cybern 2017;47:974–83.
77. Zhu D, Huang H, Yang SX. Dynamic task assignment and path planning of multiAUV system based on animproved self
organizing map and velocity synthesis method in threedimensional underwater workspace. IEEE Trans Cybern 2013;43:504–14.
78. Huang H, Zhu D, Yuan F. Dynamic task assignment and path planning for multiAUV system in 2D variable ocean current environment.
In: 2012 24th Chinese Control and Decision Conference (CCDC); 2012 May 2325; Taiyuan, China. IEEE; 2012. pp. 999–012.
79. Zhu D, Cao X, Sun B, Luo C. Biologically inspired selforganizing map applied to task assignment and path planning of an AUV system.
IEEE Trans Cogn Commun Netw 2018;10:304–13.
80. Cao X, Zhu D. MultiAUV task assignment and path planning with ocean current based on biological inspired selforganizing map and
velocity synthesis algorithm. Intelligent Automation & Soft Computing 2015;23:31–39.
81. Zhu D, Zhou B, Yang SX. A novel algorithm of multiAUVs task assignment and path planning based on biologically inspired neural
network map. IEEE Trans Hum Mach Syst 2021;6:333–42.
82. Rui Z, Zhu D. Cooperative search algorithm For AUVs based on bioinspired model. In: The 26th Chinese Control and Decision
Conference (2014 CCDC); 2014 May 31Jun 2; Changsha, China. IEEE; 2014. pp. 4569–74.
83. Cao X, Zhu D, Yang SX. MultiAUV target search based on bioinspired neurodynamics model in 3D underwater environments. IEEE
Trans Neural Netw Learn Syst 2016;27:2364–74.
84. Cao X, Zhu D. MultiAUV underwater cooperative search algorithm based on biological inspired neurodynamics model and velocity
synthesis. J Navig 2015;68:1075–87.
85. Huang Z, Zhu D. A cooperative hunting algorithm of multiAUV in 3D dynamic environment. In: The 27th Chinese Control and
Decision Conference (2015 CCDC); 2015 May 2325; Qingdao, China. IEEE; 2015. pp. 2571–75.
86. Zhu D, Lv R, Cao X, Yang SX. MultiAUV hunting algorithm based on bioinspired neural network in unknown environments. Int J
Adv Robot Syst 2015;12:166.
87. Cao X, Huang Z, Zhu D. AUV cooperative hunting algorithm based on bioinspired neural network for path conflict state. In:
2015 IEEE International Conference on Information and Automation; 2015 Aug 810; Lijang, China. IEEE; 2015. pp. 1821–26.
88. Yang SX, Yuan G, Meng M, Mittal GS. Realtime collisionfree path planning and tracking control of a nonholonomic mobile robot
using a biologically inspired approach. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation; 2001
May 2126 ; Seoul, Korea (South). vol. 4. IEEE; 2001. pp. 3402–7.
89. Yuan G, Yang SX, Mittal GS. Tracking control of a mobile robot using a neural dynamics based approach. In: Proceedings 2001 ICRA.
IEEE International Conference on Robotics and Automation; 2001 May 2126 ; Seoul, Korea (South). IEEE; 2001. pp. 163–68.
90. Zheng W, Wang H, Zhang Z, Wang H. Adaptive robust finitetime control of mobile robot systems with unmeasurable angular velocity
via bioinspired neurodynamics approach. Eng Appl Artif Intell 2019;82:330–44.
91. Hu Y, Yang SX. A fuzzy neural dynamics based tracking controller for a nonholonomic mobile robot. In: Proceedings 2003 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM 2003); 2003 Jul 2024 Kobe, Japan. IEEE; 2003. pp. 205–10.
92. Zhang HD, Liu SR, Yang SX. A neurodynamics based neuronPID controller and its application to inverted pendulum. In: Proceedings
of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826); 2004 Aug 2629; Shanghai, China.
IEEE; 2004. pp. 527–32.