Page 30 - Read Online
P. 30
Li et al. Intell Robot 2021;1(1):58-83 I http://dx.doi.org/10.20517/ir.2021.08 Page 80
Consum Electron 2012;59:3211–20.
15. Yang SX, Meng MQH. Realtime collisionfree motion planning of a mobile robot using a neural dynamicsbased approach. IEEE Trans
Neural Netw 2003;14:1541–52.
16. Zhu A, Yang SX. Path planning of multirobot systems with cooperation. In: Proceedings 2003 IEEE International Symposium on Com
putational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium;
2003 Jul 1620; Kobe, Japan. vol. 2. IEEE; 2003. pp. 1028–33.
17. Pan L, Yang SX. An electronic nose network system for online monitoring of livestock farm odors. IEEE ASME Trans Mechatron
2009;14:371–76.
18. Martynenko AI, Yang SX. Biologically inspired neural computation for ginseng drying rate. Biosyst Eng 2006;95:385–96.
19. Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J
Physiol 1952;117:500–544.
20. Cohen MA, Grossberg S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks.
IEEE Trans Syst Man Cybern B Cybern 1983;SMC13:815–26.
21. Grossberg S. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural Networks 1988;1:17–61.
22. Öĝmen H, Gagné S. Neural models for sustained and ONOFF units of insect lamina. Biol Cybern 1990;63:51–60.
23. Öǧmen H, Gagné S. Neural network architectures for motion perception and elementary motion detection in the fly visual system. Neural
Networks 1990;3:487–505.
24. Yang SX, Hu E. Realtime path planning and tracking control using a neural dynamics based approach. IFAC Proceedings Volumes
2002;35:103–8.
25. Ni J, Wu L, Shi P, Yang SX. A dynamic bioinspired neural network based realtime path planning method for autonomous underwater
Vehicles. Comput Intel Neurosc 2017;2017:1–16.
26. Ni J, Yang X, Chen J, Yang SX. Dynamic bioinspired neural network for multirobot formation control in unknown environments. Int J
Rob Autom 2015;30.
27. Oh H, Shirazi AR, Sun C, Jin Y. Bioinspired selforganising multirobot pattern formation: a review. Robot Auton Syst 2017;91:83–100.
28. Yang SX, Zhu A, Meng MQH. Biologically inspired tracking control of mobile robots with bounded accelerations. In: IEEE International
Conference on Robotics and Automation, 2004. Proceedings. ICRA '04; 2004 Apr 26 May 1; New Orleans,USA. IEEE; 2004. pp. 1610–
15.
29. Yang SX, Meng M. An efficient neural network approach to dynamic robot motion planning. Neural Networks 2000;13:143–48.
30. Yang SX, Luo C. Neural dynamics and computation for navigation of multiple robots. In: IEEE International Conference on Systems,
Man and Cybernetics; 2002 Oct 69 ; Yasmine Hammamet, Tunisia. IEEE; 2002. pp. 515–20.
31. Yang SX, Meng M, Li H. A neural computation model for realtime collisionfree robot navigation. IFAC Proceedings Volumes
2002;35:323–28.
32. Yang X, Meng M. An efficient neural network model for path planning of carlike robots in dynamic environment. In: Engineering
Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411);1999
May 912; Edmonton,Canada. IEEE; 1999. pp. 1374–79.
33. Yang SX, Meng M, Yuan X. A biological inspired neural network approach to realtime collisionfree motion planning of a nonholo
nomic carlike robot. In: Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat.
No.00CH37113); 2000 Oct 31Nov 5; Takamatsu, Japan. IEEE; 2000. pp. 239–44.
34. Yuan X, Yang SX. Virtual assembly with biologically inspired intelligence. IEEE Trans Syst Man Cybern, Part C(Appl rev) 2003;33:159–
67.
35. Luo M, Hou X, Yang SX. A multiscale map method based on bioinspired neural network algorithm for robot path planning. IEEE
Access 2019;7:142682–91.
36. Ni J, Li X, Hua M, Yang SX. Bioinspired neural networkbased Qlearning approach for robot path planning in unknown environments.
Int J Rob Autom 2016;31:464–74.
37. Ni J, Li X, Fan X, Shen J. A dynamic risk level based bioinspired neural network approach for robot path planning. In: 2014 World
Automation Congress (WAC); 2014 Aug 37; Waikoloa, USA. IEEE; 2014. pp. 829–33.
38. Chen Y, Xu W, Li Z, et al. Safetyenhanced motion planning for flexible surgical manipulator using neural dynamics.
IEEE Trans Control Syst Technol 2017;25:1711–23.
39. Yang X, Meng M. A neural network approach to realtime path planning with safety consideration. In: SMC'98 Conference Proceedings.
1998 IEEE International Conference on Systems, Man, and Cybernetics; 1998 Oct 1414; San Diego, USA. IEEE; 1998. pp. 3412–17.
40. Yang SX, Meng M. An efficient neural network method for realtime motion planning with safety consideration. Robot Auton Syst
2000;32:115–28.
41. Glasius R, Komoda A, Gielen SCAM. Neural network dynamics for path planning and obstacle avoidance. Neural Networks 1995;8:125–
33. [DOI: 10.1016/08936080(94)e0045m]