Page 49 - Read Online
P. 49

Page 18                           Chazhoor et al. Intell Robot 2022;2:1-19  https://dx.doi.org/10.20517/ir.2021.15

               Copyright
               © The Author(s) 2022.


               REFERENCES
               1.       Hiraga K, Taniguchi I, Yoshida S, Kimura Y, Oda K. Biodegradation of waste PET: a sustainable solution for dealing with plastic
                   pollution. EMBO Rep 2019;20:e49365.  DOI  PubMed  PMC
               2.       Alqattaf A. Plastic waste management: global facts, challenges and solutions. 2020 Second International Sustainability and Resilience
                   Conference: Technology and Innovation in Building Designs(51154). 2020 Nov 11-12; Sakheer, Bahrain. IEEE; 2020. p. 1-7.  DOI
               3.       Klemeš JJ, Fan YV. Plastic replacements: win or loss? 2020 5th International Conference on Smart and Sustainable Technologies
                   (SpliTech). 2020 Sep 23-26; Split, Croatia. IEEE; 2020. p. 1-6.  DOI
               4.       Backstrom  J,  Kumar  N.  Advancing  the  circular  economy  of  plastics  through  eCommerce.  Available  from:
                   https://hdl.handle.net/1721.1/130968 [Last accessed on 24 Jan 2022].
               5.       Joshi C, Browning S, Seay J. Combating plastic waste via Trash to Tank. Nat Rev Earth Environ 2020;1:142-142.  DOI
               6.       Siddique R, Khatib J, Kaur I. Use of recycled plastic in concrete: a review. Waste Manag 2008;28:1835-52.  DOI  PubMed
               7.       Jiao W, Wang Q, Cheng Y, Zhang Y. End-to-end prediction of weld penetration: a deep learning and transfer learning based method. J
                   Manuf Process 2021;63:191-7.  DOI
               8.       Duan Q, Li J. Classification of common household plastic wastes combining multiple methods based on near-infrared spectroscopy.
                   ACS EST Eng 2021;1:1065-73.  DOI
               9.       Masoumi H, Safavi SM, Khani Z. Identification and classification of plastic resins using near infrared reflectance. Int J Mech Ind Eng
                   2012;6:213-20.  DOI
               10.      Veerasingam S, Ranjani M, Venkatachalapathy R, et al. Contributions of Fourier transform infrared spectroscopy in microplastic
                   pollution research: a review. Crit Rev Environ Sci Technol 2021;51:2681-743.  DOI
               11.      Bruno EA. Automated sorting of plastics for recycling. Available from: https://www.semanticscholar.org/paper/Automated-Sorting-of-
                   Plastics-for-Recycling-Edward-Bruno/e6e5110c06f67171409bab3b38f742db6dc110fc [Last accessed on 24 Jan 2022].
               12.      Alzubaidi L, Zhang J, Humaidi AJ, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future
                   directions. J Big Data 2021;8:53.  DOI  PubMed  PMC
               13.      Albawi S, Mohammed TA, Al-Zawi S. Understanding of a convolutional neural network. 2017 International Conference on
                   Engineering and Technology (ICET). 2017 Aug 21-23; Antalya, Turkey. IEEE;2017. p. 1-6.  DOI
               14.      Xie L, Wang J, Wei Z, Wang M, Tian Q. Disturblabel: regularizing CNN on the loss layer. 2016 IEEE Conference on Computer
                   Vision and Pattern Recognition (CVPR). 2016 Jun 27-30; Las Vegas, NV, USA. IEEE; 2016. p. 4753-62.  DOI
               15.      Bobulski J, Piatkowski J. PET waste classification method and plastic waste DataBase - WaDaBa. In: Choraś M, Choraś RS, editors.
                   Image processing and communications challenges 9. Cham: Springer International Publishing; 2018. p. 57-64.  DOI
               16.      Bobulski J, Kubanek M. Waste classification system using image processing and convolutional neural networks. In: Rojas I, Joya G,
                   Catala A, editors. Advances in computational intelligence. Cham: Springer International Publishing; 2019. p. 350-61.  DOI
               17.      Agarwal S, Gudi R, Saxena P. One-Shot learning based classification for segregation of plastic waste. 2020 Digital Image Computing:
                   Techniques and Applications (DICTA). 2020 Nov 29-2020 Dec 2; Melbourne, Australia. IEEE; 2020. p. 1-3.  DOI
               18.      Chazhoor AAP, Zhu M, Ho ES, Gao B, Woo WL. Intelligent classification of different types of plastics using deep transfer learning.
                   Available from: https://researchportal.northumbria.ac.uk/ws/portalfiles/portal/55869518/ROBOVIS_2021_33_CR.pdf [Last accessed
                   on 24 Jan 2022].
               19.      Guo Y, Zhang L, Hu Y, He X, Gao J. MS-Celeb-1M: a dataset and benchmark for large-scale face recognition. In: Leibe B, Matas J,
                   Sebe N, Welling M, editors. Computer Vision - ECCV 2016. Cham: Springer International Publishing; 2016. p. 87-102.  DOI
               20.      Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Adv Neural Inf Process Syst
                   2012;25:1097-105.  DOI
               21.      He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. 2016 IEEE Conference on Computer Vision and Pattern
                   Recognition (CVPR). 2016 Jun 27-30; Las Vegas, NV, USA. IEEE; 2016. p. 770-8.  DOI
               22.      Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. 2017 IEEE Conference on
                   Computer Vision and Pattern Recognition (CVPR). 2017 Jul 21-26; Honolulu, HI, USA. IEEE; 2017. p. 5987-95.  DOI
               23.      Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
                   and< 0.5 MB model size. Available from: https://arxiv.org/abs/1602.07360 [Last accessed on 24 Jan 2022].
               24.      Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. Mobilenetv2: Inverted residuals and linear bottlenecks. 2018 IEEE/CVF
                   Conference on Computer Vision and Pattern Recognition. 2018 Jun 18-23; Salt Lake City, UT, USA. IEEE; 2018. p. 4510-20.  DOI
               25.      Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. 2017 IEEE Conference on
                   Computer Vision and Pattern Recognition (CVPR). 2017 Jul 21-26; Honolulu, HI, USA. IEEE; 2017. p. 2261-9.  DOI
               26.      Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on deep transfer learning. In: Kůrková V, Manolopoulos Y, Hammer B,
                   Iliadis L, Maglogiannis I, editors. Artificial neural networks and machine learning - ICANN 2018. Cham: Springer International
                   Publishing; 2018. p. 270-9.  DOI
               27.      Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L. Imagenet: a large-scale hierarchical image database. 2009 IEEE Conference on
                   Computer Vision and Pattern Recognition. 2009 Jun 20-25; Miami, FL, USA. IEEE; 2009. p. 248-55.  DOI
               28.      Brock A, Lim T, Ritchie JM, Weston N. Freezeout: accelerate training by progressively freezing layers. Available from:
                   https://arxiv.org/abs/1706.04983 [Last accessed on 24 Jan 2022].
   44   45   46   47   48   49   50   51   52   53   54