Page 28 - Read Online
P. 28

Page 172                            Ji et al. Intell Robot 2021;1(2):151-75  https://dx.doi.org/10.20517/ir.2021.14

               23.       Murphy K. An introduction to graphical models. Rap tech 2001;96:1-19.
               24.       Hinton GE, Osindero S, Teh YW. A fast learning algorithm for deep belief nets. Neural Comput 2006;18:1527-54.  DOI  PubMed
               25.       Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial
                    Intelligence and Statistics (AISTATS); Fort Lauderdale, FL, USA. 2011. p. 315-23.
               26.       Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM 2017;60:84-
                    90.  DOI
               27.       Koch G, Zemel R, Salakhutdinov R. Siamese neural networks for one-shot image recognition. Proceedings of the 32nd International
                    Conference on Machine Learning; Lille, France. 2015.
               28.       Ronneberger O, Fischer P, Brox T. U-Net: convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J,
                    Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention - MICCAI 2015. Cham: Springer
                    International Publishing; 2015. p. 234-41.  DOI
               29.       Tan C, Sun F, Kong T, Zhang W, Yang C, Liu C. A survey on deep transfer learning. In: Kůrková V, Manolopoulos Y, Hammer B,
                    Iliadis L, Maglogiannis I, editors. Artificial neural networks and machine learning - ICANN 2018. Cham: Springer; 2008. p. 270-9.
               30.       Goodfellow I, Pouget-abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM 2020;63:139-44.  DOI
               31.       Zeiler MD, Fergus R. Visualizing and understanding convolutional networks. In: Fleet D, Pajdla T, Schiele B, Tuytelaars T, editors.
                    Computer Vision - ECCV 2014. Cham: Springer International Publishing; 2014. p. 818-33.  DOI
               32.       Szegedy C, Liu W, Jia Y, et al. Going deeper with convolutions. Proceedings of 2015 IEEE Conference on Computer Vision and
                    Pattern Recognition (CVPR); 2015 Jun 7-12; Boston, MA. IEEE; 2005. p. 1-9.  DOI
               33.       He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. Proceedings of 2016 IEEE Conference on Computer
                    Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA. IEEE; 2016. p. 770-8.  DOI
               34.       Targ S, Almeida D, Lyman K. Resnet in resnet: generalizing residual architectures. arXiv preprint arXiv:1603.08029.
               35.       Zhang K, Sun M, Han TX, Yuan X, Guo L, Liu T. Residual networks of residual networks: multilevel residual networks. IEEE Trans
                    Circuits Syst Video Technol 2018;28:1303-14.  DOI
               36.       Zagoruyko S, Komodakis N. Wide residual networks. arXiv preprint arXiv:1605.07146.
               37.       Xie S, Girshick R, Dollár P, Tu Z, He K. Aggregated residual transformations for deep neural networks. Proceedings of 2017 IEEE
                    Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI, USA. IEEE; 2017. p. 5987-95.
                    DOI
               38.       Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely connected convolutional networks. Proceedings of 2017 IEEE
                    Conference on Computer Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI, USA. IEEE; 2017. p. 2261-9.  DOI
               39.       Huang G, Sun Y, Liu Z, Sedra D, Weinberger KQ. Deep networks with stochastic depth. In: Leibe B, Matas J, Sebe N, Welling M,
                    editors. Computer vision - ECCV 2016. Cham: Springer International Publishing; 2016. p. 646-61.  DOI
               40.       Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556.
               41.       He K, Zhang X, Ren S, Sun J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans Pattern
                    Anal Mach Intell 2015;37:1904-16.  DOI  PubMed
               42.       He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: surpassing human-level performance on imagenet classification.
                    Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV); 2015 Dec 7-13; Santiago, Chile. IEEE; 2015. p.
                    1026-34.  DOI
               43.       Chollet F. Xception: deep learning with depthwise separable convolutions. Proceedings of 2017 IEEE Conference on Computer
                    Vision and Pattern Recognition (CVPR); 2017 Jul 21-26; Honolulu, HI, USA. IEEE; 2017. p. 1800-7.  DOI
               44.       Howard AG, Zhu M, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. arXiv preprint
                    arXiv:1704.04861.
               45.       Larsson G, Maire M, Shakhnarovich G. Fractalnet: ultra-deep neural networks without residuals. arXiv preprint arXiv:1605.07648.
               46.       Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y. Overfeat: integrated recognition, localization and detection using
                    convolutional networks. arXiv preprint arXiv:1312.6229.
               47.       Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation.
                    Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition; 2014 Jun 23-28; Columbus, OH, USA. IEEE;
                    2014. p. 580-7.  DOI
               48.       Girshick R. Fast R-CNN. Proceedings of 2015 IEEE International Conference on Computer Vision (ICCV); 2015 Dec 7-13; Santiago,
                    Chile. IEEE; 2015. p. 1440-8.  DOI
               49.       Ren S, He K, Girshick R, Sun J. Faster R-CNN: towards real-time object detection with region proposal networks. IEEE Trans
                    Pattern Anal Mach Intell 2017;39:1137-49.  DOI  PubMed
               50.       Ouyang W, Zeng X, Wang X, et al. DeepID-Net: deformable deep convolutional neural networks for object detection. IEEE Trans
                    Pattern Anal Mach Intell 2017;39:1320-34.  DOI  PubMed
               51.       Dai  J,  Li  Y,  He  K,  Sun  J.  R-fcn:  object  detection  via  region-based  fully  convolutional  networks.  Available  from:
                    https://arxiv.org/pdf/1605.06409.pdf [Last accessed on 5 Jan 2022].
               52.       Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: unified, real-time object detection. Proceedings of 2016 IEEE
                    Conference on Computer Vision and Pattern Recognition (CVPR); 2016 Jun 27-30; Las Vegas, NV, USA. IEEE; 2016. p. 779-88.
                    DOI
               53.       Liu W, Anguelov D, Erhan D, et al. SSD: Single Shot MultiBox Detector. In: Leibe B, Matas J, Sebe N, Welling M, editors.
                    Computer vision - ECCV 2016. Cham: Springer International Publishing; 2016. p. 21-37.  DOI
               54.       Shelhamer E, Long J, Darrell T. Fully convolutional networks for semantic segmentation. IEEE Trans Pattern Anal Mach Intell
   23   24   25   26   27   28   29   30   31   32   33