Page 995 - Read Online
P. 995

Page 16 of 18                                               Machado. Hepatoma Res 2020;6:84  I  http://dx.doi.org/10.20517/2394-5079.2020.90

                   Hepatol 2017;66:123-31.
               83.  Petta S, Ciminnisi S, Di Marco V, et al. Sarcopenia is associated with severe liver fibrosis in patients with non-alcoholic fatty liver
                   disease. Aliment Pharmacol Ther 2017;45:510-8.
               84.  Yu R, Shi Q, Liu L, Chen L. Relationship of sarcopenia with steatohepatitis and advanced liver fibrosis in non-alcoholic fatty liver
                   disease: a meta-analysis. BMC Gastroenterol 2018;18:51.
               85.  Cai C, Song X, Chen Y, Chen X, Yu C. Relationship between relative skeletal muscle mass and nonalcoholic fatty liver disease: a
                   systematic review and meta-analysis. Hepatol Int 2020;14:115-26.
               86.  Tobari M, Hashimoto E, Taniai M, et al. Characteristics of non-alcoholic steatohepatitis among lean patients in Japan: Not uncommon and
                   not always benign. J Gastroenterol Hepatol 2019;34:1404-10.
               87.  Machado MV, Ferreira DM, Castro RE, et al. Liver and muscle in morbid obesity: the interplay of fatty liver and insulin resistance. PLoS
                   One 2012;7:e31738.
               88.  Bhanji RA, Narayanan P, Allen AM, Malhi H, Watt KD. Sarcopenia in hiding: the risk and consequence of underestimating muscle
                   dysfunction in nonalcoholic steatohepatitis. Hepatology 2017;66:2055-65.
               89.  Kalyani RR, Corriere M, Ferrucci L. Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases.
                   Lancet Diabetes Endocrinol 2014;2:819-29.
               90.  Hernandez-Alvarez MI, Thabit H, Burns N, et al. Subjects with early-onset type 2 diabetes show defective activation of the skeletal
                   muscle PGC-1{alpha}/Mitofusin-2 regulatory pathway in response to physical activity. Diabetes Care 2010;33:645-51.
               91.  Phillips T, Leeuwenburgh C. Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie
                   restriction. FASEB J 2005;19:668-70.
               92.  Rubio-Ruiz ME, Guarner-Lans V, Perez-Torres I, Soto ME. Mechanisms underlying metabolic syndrome-related sarcopenia and possible
                   therapeutic measures. Int J Mol Sci 2019;20:647.
               93.  Defronzo RA. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus.
                   Diabetes 2009;58:773-95.
               94.  Kim TN, Yang SJ, Yoo HJ, et al. Prevalence of sarcopenia and sarcopenic obesity in Korean adults: the Korean sarcopenic obesity study.
                   Int J Obes (Lond) 2009;33:885-92.
               95.  Bostrom P, Wu J, Jedrychowski MP, et al. A PGC1-alpha-dependent myokine that drives brown-fat-like development of white fat and
                   thermogenesis. Nature 2012;481:463-8.
               96.  Zhang HJ, Zhang XF, Ma ZM, et al. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J Hepatol
                   2013;59:557-62.
               97.  Huh JY. The role of exercise-induced myokines in regulating metabolism. Arch Pharm Res 2018;41:14-29.
               98.  Han HQ, Zhou X, Mitch WE, Goldberg AL. Myostatin/activin pathway antagonism: molecular basis and therapeutic potential. Int J
                   Biochem Cell Biol 2013;45:2333-47.
               99.  Li F, Li Y, Duan Y, Hu CA, Tang Y, Yin Y. Myokines and adipokines: Involvement in the crosstalk between skeletal muscle and adipose
                   tissue. Cytokine Growth Factor Rev 2017;33:73-82.
               100. Konopka AR, Wolff CA, Suer MK, Harber MP. Relationship between intermuscular adipose tissue infiltration and myostatin before and
                   after aerobic exercise training. Am J Physiol Regul Integr Comp Physiol 2018;315:R461-8.
               101. Delogu W, Caligiuri A, Provenzano A, et al. Myostatin regulates the fibrogenic phenotype of hepatic stellate cells via c-jun N-terminal
                   kinase activation. Dig Liver Dis 2019;51:1400-8.
               102. Garcia PS, Cabbabe A, Kambadur R, Nicholas G, Csete M. Brief-reports: elevated myostatin levels in patients with liver disease: a
                   potential contributor to skeletal muscle wasting. Anesth Analg 2010;111:707-9.
               103. Nishikawa H, Enomoto H, Ishii A, et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis.
                   J Cachexia Sarcopenia Muscle 2017;8:915-25.
               104. Shida T, Oshida N, Oh S, Okada K, Shoda J. Progressive reduction in skeletal muscle mass to visceral fat area ratio is associated with a
                   worsening of the hepatic conditions of non-alcoholic fatty liver disease. Diabetes Metab Syndr Obes 2019;12:495-503.
               105. Romeo S, Kozlitina J, Xing C, et al. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet
                   2008;40:1461-5.
               106. Speliotes EK, Butler JL, Palmer CD, et al. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver
                   disease but not metabolic disease. Hepatology 2010;52:904-12.
               107. Rotman Y, Koh C, Zmuda JM, Kleiner DE, Liang TJ, Nash CRN. The association of genetic variability in patatin-like phospholipase
                   domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology 2010;52:894-903.
               108. Valenti L, Al-Serri A, Daly AK, et al. Homozygosity for the patatin-like phospholipase-3/adiponutrin I148M polymorphism influences
                   liver fibrosis in patients with nonalcoholic fatty liver disease. Hepatology 2010;51:1209-17.
               109. Sookoian S, Pirola CJ. Meta-analysis of the influence of I148M variant of patatin-like phospholipase domain containing 3 gene (PNPLA3)
                   on the susceptibility and histological severity of nonalcoholic fatty liver disease. Hepatology 2011;53:1883-94.
               110.  Liu YL, Patman GL, Leathart JB, et al. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic
                   fatty liver disease associated hepatocellular carcinoma. J Hepatol 2014;61:75-81.
               111.  Dubuquoy C, Robichon C, Lasnier F, et al. Distinct regulation of adiponutrin/PNPLA3 gene expression by the transcription factors
                   ChREBP and SREBP1c in mouse and human hepatocytes. J Hepatol 2011;55:145-53.
               112.  Huang Y, He S, Li JZ, et al. A feed-forward loop amplifies nutritional regulation of PNPLA3. Proc Natl Acad Sci U S A 2010;107:7892-7.
               113.  Hao L, Ito K, Huang KH, Sae-tan S, Lambert JD, Ross AC. Shifts in dietary carbohydrate-lipid exposure regulate expression of the
   990   991   992   993   994   995   996   997   998   999   1000