Page 966 - Read Online
P. 966

Page 10 of 11                                          Brodosi et al. Hepatoma Res 2020;6:82  I  http://dx.doi.org/10.20517/2394-5079.2020.88

               58.  Cusi K, Sattar N, García-Pérez LE, et al. Dulaglutide decreases plasma aminotransferases in people with Type 2 diabetes in a pattern
                   consistent with liver fat reduction: a post hoc analysis of the AWARD programme. Diabet Med 2018;35:1434-9.
               59.  Buse JB, Klonoff DC, Nielsen LL, et al. Metabolic effects of two years of exenatide treatment on diabetes, obesity, and hepatic
                   biomarkers in patients with type 2 diabetes: an interim analysis of data from the open-label, uncontrolled extension of three double-blind,
                   placebo-controlled trials. Clin Ther 2007;29:139-53.
               60.  Kenny PR, Brady DE, Torres DM, Ragozzino L, Chalasani N, Harrison SA. Exenatide in the treatment of diabetic patients with non-
                   alcoholic steatohepatitis: a case series. Am J Gastroenterol 2010;105:2707-9.
               61.  Dutour A, Abdesselam I, Ancel P, et al. Exenatide decreases liver fat content and epicardial adipose tissue in patients with obesity and
                   type 2 diabetes: a prospective randomized clinical trial using magnetic resonance imaging and spectroscopy. Diabetes Obes Metab
                   2016;18:882-91.
               62.  Cuthbertson DJ, Irwin A, Gardner CJ, et al. Improved glycaemia correlates with liver fat reduction in obese, type 2 diabetes, patients
                   given glucagon-like peptide-1 (GLP-1) receptor agonists. PLoS One 2012;7:e50117.
               63.  Fan H, Pan Q, Xu Y, Yang X. Exenatide improves type 2 diabetes concomitant with non-alcoholic fatty liver disease. Arq Bras Endocrinol
                   Metabol 2013;57:702-8.
               64.  Sathyanarayana P, Jogi M, Muthupillai R, Krishnamurthy R, Samson SL, Bajaj M. Effects of combined exenatide and pioglitazone
                   therapy on hepatic fat content in type 2 diabetes. Obesity (Silver Spring) 2011;19:2310-5.
               65.  NOVO Nordisk. Semaglutide in NASH phase 2 trial successfully completed. Financial report for the period 1 January 2020 to 31 March
                   2020. Available from: https://www.novonordisk.com/content/dam/Denmark/HQ/investors/irmaterial/quarterly_financial_reports/2020/
                   Financial%20report%20for%20Q1%202020.pdf;2020. [Last accessed on 22 Oct 2020]
               66.  NOVO Nordisk. Semaglutide 2.4 mg demonstrates superior and sustained weight loss versus placebo and in addition a 17.4% weight loss
                   after 68 weeks in STEP 4 trial. In: editor^editors, editor. GlobeNewswire. Available from: https://ml-eu.globenewswire.com/Resource/
                   Download/4951d1a2-3bd1-47ea-840a-a1234109c018;2020. [Last accessed on 22 Oct 2020]
               67.  Zinman B, Aroda VR, Buse JB, et al; PIONEER 8 Investigators. Efficacy, safety, and tolerability of oral semaglutide versus placebo
                   added to insulin with or without metformin in patients with type 2 diabetes: the PIONEER 8 trial. Diabetes Care2019;42:2262-71.
               68.  Vukotic R, Raimondi F, Brodosi L, et al. The effect of liraglutide on β-blockade for preventing variceal bleeding: a case series. Ann Intern
                   Med 2020;173:404-5.
               69.  Drucker DJ. The cardiovascular biology of glucagon-like peptide-1. Cell Metab 2016;24:15-30.
               70.  Simes BC, MacGregor GG. Sodium-glucose cotransporter-2 (SGLT2) inhibitors: a clinician’s guide. Diabetes Metab Syndr Obes
                   2019;12:2125-36.
               71.  Wu JHY, Foote C, Blomster J, et al. Effects of sodium-glucose cotransporter-2 inhibitors on cardiovascular events, death, and major
                   safety outcomes in adults with type 2 diabetes: a systematic review and meta-analysis. Lancet Diab & Endocrinol 2016;4:411-9.
               72.  Kluger AY, Tecson KM, Lee AY, et al. Class effects of SGLT2 inhibitors on cardiorenal outcomes. Cardiovasc Diabetol 2019;18:99.
               73.  Cai X, Yang W, Gao X, et al. The association between the dosage of SGLT2 inhibitor and weight reduction in type 2 diabetes patients: a
                   meta-analysis. Obesity (Silver Spring) 2018;26:70-80.
               74.  Raschi E, Parisotto M, Forcesi E, et al. Adverse events with sodium-glucose co-transporter-2 inhibitors: a global analysis of international
                   spontaneous reporting systems. Nutr Metab Cardiovasc Dis 2017;27:1098-107.
               75.  Eriksson JW, Lundkvist P, Jansson PA, et al. Effects of dapagliflozin and n-3 carboxylic acids on non-alcoholic fatty liver disease in
                   people with type 2 diabetes: a double-blind randomised placebo-controlled study. Diabetologia 2018;61:1923-34.
               76.  Kuchay MS, Krishan S, Mishra SK, et al. Effect of empagliflozin on liver fat in patients with type 2 diabetes and nonalcoholic fatty liver
                   disease: a randomized controlled trial (E-LIFT Trial). Diabetes Care 2018;41:1801-8.
               77.  Inoue M, Hayashi A, Taguchi T, et al. Effects of canagliflozin on body composition and hepatic fat content in type 2 diabetes patients with
                   non-alcoholic fatty liver disease. J Diabetes Investig 2019;10:1004-11.
               78.  Kurinami N, Sugiyama S, Yoshida A, et al. Dapagliflozin significantly reduced liver fat accumulation associated with a decrease in
                   abdominal subcutaneous fat in patients with inadequately controlled type 2 diabetes mellitus. Diabetes Res Clin Pract2018;142:254-63.
               79.  Shimizu M, Suzuki K, Kato K, et al. Evaluation of the effects of dapagliflozin, a sodium-glucose co-transporter-2 inhibitor, on hepatic
                   steatosis and fibrosis using transient elastography in patients with type 2 diabetes and non-alcoholic fatty liver disease. Diabetes Obes
                   Metab 2019;21:285-92.
               80.  Sattar N, Fitchett D, Hantel S, George JT, Zinman B. Empagliflozin is associated with improvements in liver enzymes potentially
                   consistent with reductions in liver fat: results from randomised trials including the EMPA-REG OUTCOME® trial. Diabetologia
                   2018;61:2155-63.
               81.  Choi DH, Jung CH, Mok JO, Kim CH, Kang SK, Kim BY. Effect of dapagliflozin on alanine aminotransferase improvement in type 2
                   diabetes mellitus with non-alcoholic fatty liver disease. Endocrinol Metab (Seoul) 2018;33:387-94.
               82.  Bajaj HS, Brown RE, Bhullar L, Sohi N, Kalra S, Aronson R. SGLT2 inhibitors and incretin agents: associations with alanine
                   aminotransferase activity in type 2 diabetes. Diabetes Metab 2018;44:493-9.
               83.  Akuta N, Watanabe C, Kawamura Y, et al. Effects of a sodium-glucose cotransporter 2 inhibitor in nonalcoholic fatty liver disease
                   complicated by diabetes mellitus: preliminary prospective study based on serial liver biopsies. Hepatol Commun2017;1:46-52.
               84.  Wang H, Yang J, Chen X, Qiu F, Li J. Effects of sodium-glucose cotransporter 2 inhibitor monotherapy on weight changes in patients
                   with type 2 diabetes mellitus: a bayesian network meta-analysis. Clin Ther 2019;41:322-34.e11.
               85.  Hung MH, Chen YL, Chen LJ, et al. Canagliflozin inhibits growth of hepatocellular carcinoma via blocking glucose-influx-induced
                   β-catenin activation. Cell Death Dis 2019;10:420.
   961   962   963   964   965   966   967   968   969   970   971