Page 284 - Read Online
P. 284

Page 14 of 18                                              Zhang et al. Hepatoma Res 2019;5:27  I  http://dx.doi.org/10.20517/2394-5079.2019.13

                   survival in hepatocellular carcinoma. Oncol Rep 2010;24:537-46.
               55  Lin CY, Chen TC, Lai MW, Chia-Jung K, Chau-Ting Y, et al. CD133-positive hepatocellular carcinoma in an area endemic for hepatitis
                   B virus infection. BMC Cancer 2009;9:1-11.
               56  Ma YC, Yang JY, Yan LN. Relevant markers of cancer stem cells indicate a poor prognosis in hepatocellular carcinoma patients: a meta-
                   analysis. Eur J Gastroenterol Hepatol 2013;25:1007-16.
               57  Huang L, Bian S, Cheng Y, Shi G, Liu P, et al. Microfluidics cell sample preparation for analysis:advances in efficient cell enrichment
                   and precise single cell capture. Biomicrofluidics 2017;11:011501.
               58  Chen ZZ, Huang L, Wu YH, Zhai WJ, Zhu PP, et al. LncSox4 promotes the self-renewal of liver tumour-initiating cells through Stat3-
                   mediated Sox4 expression. Nat Commun 2016;7:12598.
               59  Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, et al. CD133/prominin-1 is a potential therapeutic target for antibody-drug
                   conjugates in hepatocellular and gastric cancers. Br J Cancer 2008;99:100-9.
               60  Lang J, Lan X, Liu Y, Jin X, Wu T, et al. Targeting cancer stem cells with an (131)I-labeled anti-AC133 monoclonal antibody in human
                   colorectal cancer xenografts. Nucl Med Biol 2015;42:505-12.
               61  Huang J, Li C, Wang Y, Lv H, Guo Y, et al. Cytokine-induced killer (CIK) cells bound with anti-CD3/anti-CD133 bispecific antibodies
                   target CD133high cancer stem cells in vitro and in vivo. Clin Immunol 2013;149:156-68.
               62  Gallatin  WM,  Weissman  IL,  Butcher  EC.  A  cell-surface  molecule  involved  in  organ-specific  homing  of  lymphocytes.  Nature
                   1983;304:30-4.
               63  Haegel H, Dierich A, Ceredig R. CD44 in differentiated embryonic stem cells: surface expression and transcripts encoding multiple
                   variants. Dev Immunol 1994;3:239-46.
               64  Bruns I, Cadeddu RP, Brueckmann I, Fröbel J, Geyh S, et al. Multiple myeloma-related deregulation of bone marrow-derived CD34+
                   hematopoietic stem and progenitor cells. Blood 2012;120:2620-30.
               65  Campagnoli C, Roberts IA, Kumar S, Bennett PR, Bellantuono I, et al. Identification of mesenchymal stem/progenitor cells in human
                   first-trimester fetal blood, liver, and bone marrow. Blood 2001;98:2396-402.
               66  Du L, Wang H, He L, Zhang J, Ni B, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res
                   2008;14:6751-60.
               67  Chenwei L, Heidt DG, Piero D, Burant CF, Lanjing Z, Volkan A, Max W, Clarke MF, Simeone DM, %J Journal of Surgical Research.
                   Identification of pancreatic cancer stem cells. 2006; 130: 194-195
               68  Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, et al. Identification of a subpopulation of cells with cancer stem cell
                   properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A 2007;104:973-8.
               69  Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells.
                   2003;100(7):3983-8.
               70  Goldstein LA, Zhou DF, Picker LJ, Minty CN, Bargatze RF, et al. A human lymphocyte homing receptor, the hermes antigen, is related
                   to cartilage proteoglycan core and link proteins. Cell 1989;56:1063-72.
               71  Screaton GR, Bell MV, Bell JI, Jackson DG. The identification of a new alternative exon with highly restricted tissue expression in
                   transcripts encoding the mouse Pgp-1 (CD44) homing receptor. Comparison of all 10 variable exons between mouse, human, and rat. J
                   Biol Chem 1993;268:12235-8.
               72  Screaton GR, Bell MV, Jackson DG, Cornelis FB, Gerth U, et al. Genomic structure of DNA encoding the lymphocyte homing receptor
                   CD44 reveals at least 12 alternatively spliced exons. Proc Natl Acad Sci U S A 1992;89:12160-4.
               73  Harn HJ, Ho LI, Yu CP, Wang MW, Lee HS, et al. The variant mRNA isoform of human metastasis gene (CD44V) detected in the cell
                   lines of human hepatocellular carcinoma. Biochem Mol Biol Int 1994;32:233-8.
               74  van  Weering  DH,  Baas  PD,  Bos  JL.  A  PCR-based  method  for  the  analysis  of  human  CD44  splice  products.  PCR  Methods  Appl
                   1993;3:100-6.
               75  Williams K, Motiani K, Giridhar PV, Kasper S. CD44 integrates signaling in normal stem cell, cancer stem cell and (pre)metastatic
                   niches. Exp Biol Med (Maywood) 2013;238:324-38.
               76  Kon J, Ooe H, Oshima H, Kikkawa Y, Mitaka T. Expression of CD44 in rat hepatic progenitor cells. J Hepatol 2006;45:90-8.
               77  Mima K, Okabe H, Ishimoto T, Hayashi H, Nakagawa S, et al. CD44s regulates the TGF-β-mediated mesenchymal phenotype and is
                   associated with poor prognosis in patients with hepatocellular carcinoma. Cancer Res 2012;72:3414-23.
               78  Wan S, Zhao E, Kryczek I, Vatan L, Sadovskaya A, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3
                   to promote expansion of human hepatocellular carcinoma stem cells. Gastroenterology 2014;147:1393-404.
               79  Zhu Z, Hao X, Yan M, Yao M, Ge C, et al. Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular
                   carcinoma. Int J Cancer 2010;126:2067-78.
               80  Zhang T, Gong T, Xie J, Lin S, Liu Y, et al. Softening substrates promote chondrocytes phenotype via RhoA/ROCK pathway. ACS Appl
                   Mater Interfaces 2016;8:22884-91.
               81  Dhar D, Antonucci L, Nakagawa H, Kim JY, Glitzner E, et al. Liver cancer initiation requires p53 inhibition by CD44-enhanced growth
                   factor signaling. Cancer Cell 2018;33:1061-77.
               82  Fan Z, Xia H, Xu H, Ma J, Zhou S, et al. Standard CD44 modulates YAP1 through a positive feedback loop in hepatocellular carcinoma.
                   Biomed Pharmacother 2018;103:147-56.
               83  Kopanja D, Pandey A, Kiefer M, Wang Z, Chandan N, et al. Essential roles of FoxM1 in Ras-induced liver cancer progression and in
                   cancer cells with stem cell features. J Hepatol 2015;63:429-36.
               84  Zheng X, Zhang F, Zhao Y, Zhang J, Dawulieti J, et al. Self-assembled dual fluorescence nanoparticles for CD44-targeted delivery of
   279   280   281   282   283   284   285   286   287   288   289