Page 452 - Read Online
P. 452

Farghaly et al. Hepatoma Res 2018;4:41  I  http://dx.doi.org/10.20517/2394-5079.2018.30                                           Page 9 of 10

               Financial support and sponsorship
               Working at Dr. Khalil laboratory is supported by Science and Technology Development Fund (STDF), Egypt;
               Project ID: 4694.

               Conflicts of interest
               All authors declare that there are no conflicts of interest.

               Ethical approval and consent to participate
               This study was approved by the ethical committee for post graduate studies of the University of Sadat City.


               Consent for publication
               Not applicable.

               Copyright
               © The Author(s) 2018.



               REFERENCES
               1.   Khalil H, Arfa M, El-Masrey S, EL-Sherbini S, Abd-Elaziz A. Single nucleotide polymorphisms of interleukins associated with hepatitis
                   C virus infection in Egypt. J Infect Dev Ctries 2017;11:261-8.
               2.   Chen SL, Morgan TR. The natural history of hepatitis C virus (HCV) infection. Int J Med Sci 2006;3: 47-52.
               3.   Mauss S, Berg T, Rockstroh J, Sarrazin C, Wedemeyer H. Hepatology. Medizin Fokus Verlag 2016;1:197-207.
               4.   Pirakitikulr N, Kohlway A, Lindenbach BD, Pyle AM. The coding region of the HCV genome contains a network of regulatory RNA
                   structures. Mol Cell 2016;62:111-20.
               5.   Ploss A, Evans MJ. Hepatitis C virus host cell entry. Curr Opin Virol 2012;2:14-9.
               6.   Douam F, Lavillette D, Cosset FL. The mechanism of HCV entry into host cells. Prog Mol Biol Transl Sci 2015;129:63-107.
               7.   Eyre NS, Drummer HE, Beard MR. The SR-BI partner PDZK1 facilitates hepatitis C virus entry. PLoS Pathog 2010;6:e1001130.
               8.   Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wölk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM. Claudin-1
                   is a hepatitis C virus co-receptor required for a late step in entry. Nature 2007;446:801-5.
               9.   Koutsoudakis G, Herrmann E, Kallis S, Bartenschlager R, Pietschmann T. The level of CD81 cell surface expression is a key
                   determinant for productive entry of hepatitis C virus into host cells. J Virol 2007;81:588-98.
               10.  Samreen B, Khaliq S, Ashfaq UA, Khan M, Afzal N, Shahzad MA, Riaz S, Jahan S. Hepatitis C virus entry: Role of host and viral
                   factors. Infect Genet Evol 2012;12:1699-709.
               11.  Everson GT, Sims KD, Rodriguez-Torres M, Hézode C, Lawitz E, Bourlière M, Loustaud-Ratti V, Rustgi V, Schwartz H, Tatum H,
                   Marcellin P, Pol S, Thuluvath PJ, Eley T, Wang X, Huang SP, McPhee F, Wind-Rotolo M, Chung E, Pasquinelli C, Grasela DM,
                   Gardiner DF. Efficacy of an interferon- and ribavirin-free regimen of daclatasvir, asunaprevir, and BMS-791325 in treatment-naive
                   patients with HCV genotype 1 infection. Gastroenterology 2014;146:420-9.
               12.  Gentile I, Buonomo AR, Zappulo E, Minei G, Morisco F, Borrelli F, Coppola N, Borgia G. Asunaprevir, a protease inhibitor for the
                   treatment of hepatitis C infection. Ther Clin Risk Manag 2014;10:493-504.
               13.  Polish Group of Experts for HCV; Halota W, Flisiak R, Juszczyk J, Małkowski P, Pawłowska M, Simon K, Tomasiewicz K.
                   Recommendations for the treatment of hepatitis C in 2017. Clin Exp Hepatol 2017;3:47-55.
               14.  Li Q, Brass AL, Ng A, Hu Z, Xavier RJ, Liang TJ, Elledge SJ. A genome-wide genetic screen for host factors required for hepatitis C
                   virus propagation. Proc Natl Acad Sci U S A 2009;106:16410-5.
               15.  Brenner BG, Wainberg Z. Heat shock proteins: novel therapeutic tools for HIV-infection? Expert Opin Biol Ther 2001;1:67-77.
               16.  Santoro MG. Heat shock proteins and virus replication: hsp70s as mediators of the antiviral effects of prostaglandins. Experientia
                   1994;50:1039-47.
               17.  Braga ACS, Carneiro BM, Batista MN, Akinaga MM, Bittar C, Rahal P. Heat shock proteins HSPB8 and DNAJC5B have HCV antiviral
                   activity. PLoS One 2017;12:e0188467.
               18.  Brenu EW, Staines DR, Tajouri L, Huth T, Ashton KJ, Marshall-Gradisnik SM. Heat shock proteins and regulatory T cells. Autoimmune
                   Dis 2013;2013:813256.
               19.  Pandey R, Mandal AK, Jha V, Mukerji M. Heat shock factor binding in Alu repeats expands its involvement in stress through an
                   antisense mechanism. Genome Biol 2011;12:R117.
               20.  Häsler J, Strub K. Alu elements as regulators of gene expression. Nucleic Acids Res 2006;34:5491-7.
               21.  Batzer MA, Deininger PL. Alu repeats and human genomic diversity. Nat Rev Genet 2002;3:370-9.
               22.  Wilson DN, Nierhaus KH. Ribosomal proteins in the spotlight. Crit Rev Biochem Mol Biol 2005;40:243-67.
               23.  Warner JR, McIntosh KB. How common are extraribosomal functions of ribosomal proteins? Mol Cell 2009;34:3-11.
               24.  Kim CW, Chang KM. Hepatitis C virus: virology and life cycle. Clin Mol Hepatol 2013;19:17-25.
   447   448   449   450   451   452   453   454   455   456   457