Page 108 - Read Online
P. 108

Cadamuro et al. Hepatoma Res 2022;8:11  https://dx.doi.org/10.20517/2394-5079.2021.140  Page 13 of 16

                    mice. Stem Cells 2015;33:3569-80.  DOI  PubMed
               25.       Fabris L, Cadamuro M, Cagnin S, Strazzabosco M, Gores GJ. Liver matrix in benign and malignant biliary tract disease. Semin Liver
                    Dis 2020;40:282-97.  DOI  PubMed
               26.       Mertens JC, Fingas CD, Christensen JD, et al. Therapeutic effects of deleting cancer-associated fibroblasts in cholangiocarcinoma.
                    Cancer Res 2013;73:897-907.  DOI  PubMed  PMC
               27.       Cadamuro M, Nardo G, Indraccolo S, et al. Platelet-derived growth factor-D and Rho GTPases regulate recruitment of cancer-
                    associated fibroblasts in cholangiocarcinoma. Hepatology 2013;58:1042-53.  DOI  PubMed  PMC
               28.       Vaquero J, Aoudjehane L, Fouassier L. Cancer-associated fibroblasts in cholangiocarcinoma. Curr Opin Gastroenterol 2020;36:63-9.
                    DOI  PubMed
               29.       Brivio S, Cadamuro M, Strazzabosco M, Fabris L. Tumor reactive stroma in cholangiocarcinoma: the fuel behind cancer
                    aggressiveness. World J Hepatol 2017;9:455-68.  DOI  PubMed  PMC
               30.       Kuperwasser C, Chavarria T, Wu M, et al. Reconstruction of functionally normal and malignant human breast tissues in mice. Proc
                    Natl Acad Sci U S A 2004;101:4966-71.  DOI  PubMed  PMC
               31.       Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 2016;30:1002-19.
                    DOI  PubMed  PMC
               32.       Stacker SA, Williams SP, Karnezis T, Shayan R, Fox SB, Achen MG. Lymphangiogenesis and lymphatic vessel remodelling in
                    cancer. Nat Rev Cancer 2014;14:159-72.  DOI  PubMed
               33.       Cadamuro M, Brivio S, Mertens J, et al. Platelet-derived growth factor-D enables liver myofibroblasts to promote tumor
                    lymphangiogenesis in cholangiocarcinoma. J Hepatol 2019;70:700-9.  DOI  PubMed
               34.       Kim H, Kataru RP, Koh GY. Inflammation-associated lymphangiogenesis: a double-edged sword? J Clin Invest 2014;124:936-42.
                    DOI  PubMed  PMC
               35.       Thelen A, Scholz A, Benckert C, et al. Microvessel density correlates with lymph node metastases and prognosis in hilar
                    cholangiocarcinoma. J Gastroenterol 2008;43:959-66.  DOI  PubMed
               36.       Thelen A, Scholz A, Benckert C, et al. Tumor-associated lymphangiogenesis correlates with lymph node metastases and prognosis in
                    hilar cholangiocarcinoma. Ann Surg Oncol 2008;15:791-9.  DOI  PubMed
               37.       Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat
                    Rev Clin Oncol 2017;14:399-416.  DOI  PubMed  PMC
               38.       Duluc D, Delneste Y, Tan F, et al. Tumor-associated leukemia inhibitory factor and IL-6 skew monocyte differentiation into tumor-
                    associated macrophage-like cells. Blood 2007;110:4319-30.  DOI  PubMed
               39.       Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm
                    2015;2015:816460.  DOI  PubMed  PMC
               40.       Hasita H, Komohara Y, Okabe H, et al. Significance of alternatively activated macrophages in patients with intrahepatic
                    cholangiocarcinoma. Cancer Sci 2010;101:1913-9.  DOI  PubMed
               41.       Paillet J, Kroemer G, Pol JG. Immune contexture of cholangiocarcinoma. Curr Opin Gastroenterol 2020;36:70-6.  DOI  PubMed
               42.       Dalen FJ, van Stevendaal MHME, Fennemann FL, Verdoes M, Ilina O. Molecular repolarisation of tumour-associated macrophages.
                    Molecules 2018;24:9.  DOI  PubMed  PMC
               43.       Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in cancer. Trends Immunol 2019;40:310-27.  DOI  PubMed
               44.       Loilome W, Bungkanjana P, Techasen A, et al. Activated macrophages promote Wnt/β-catenin signaling in cholangiocarcinoma cells.
                    Tumour Biol 2014;35:5357-67.  DOI  PubMed  PMC
               45.       Boulter L, Guest RV, Kendall TJ, et al. WNT signaling drives cholangiocarcinoma growth and can be pharmacologically inhibited. J
                    Clin Invest 2015;125:1269-85.  DOI  PubMed  PMC
               46.       Henze AT, Mazzone M. The impact of hypoxia on tumor-associated macrophages. J Clin Invest 2016;126:3672-9.  DOI  PubMed
                    PMC
               47.       Liu S, Jiang J, Huang L, et al. iNOS is associated with tumorigenicity as an independent prognosticator in human intrahepatic
                    cholangiocarcinoma. Cancer Manag Res 2019;11:8005-22.  DOI  PubMed  PMC
               48.       Thanee  M,  Loilome  W,  Techasen  A,  et  al.  Quantitative  changes  in  tumor-associated  M2  macrophages  characterize
                    cholangiocarcinoma and their association with metastasis. Asian Pac J Cancer Prev 2015;16:3043-50.  DOI  PubMed
               49.       Zhou M, Wang C, Lu S, et al. Tumor-associated macrophages in cholangiocarcinoma: complex interplay and potential therapeutic
                    target. EBioMedicine 2021;67:103375.  DOI  PubMed  PMC
               50.       Chiossone L, Dumas PY, Vienne M, Vivier E. Natural killer cells and other innate lymphoid cells in cancer. Nat Rev Immunol
                    2018;18:671-88.  DOI  PubMed
               51.       Carnevale G, Carpino G, Cardinale V, et al. Activation of Fas/FasL pathway and the role of c-FLIP in primary culture of human
                    cholangiocarcinoma cells. Sci Rep 2017;7:14419.  DOI  PubMed  PMC
               52.       Wendel M, Galani IE, Suri-Payer E, Cerwenka A. Natural killer cell accumulation in tumors is dependent on IFN-gamma and
                    CXCR3 ligands. Cancer Res 2008;68:8437-45.  DOI  PubMed
               53.       Fukuda Y, Asaoka T, Eguchi H, et al. Endogenous CXCL9 affects prognosis by regulating tumor-infiltrating natural killer cells in
                    intrahepatic cholangiocarcinoma. Cancer Sci 2020;111:323-33.  DOI  PubMed  PMC
               54.       Jung IH, Kim DH, Yoo DK, et al. In vivo study of natural killer (NK) cell cytotoxicity against cholangiocarcinoma in a nude mouse
                    model. In Vivo 2018;32:771-81.  DOI  PubMed  PMC
               55.       Morisaki T, Umebayashi M, Kiyota A, et al. Combining cetuximab with killer lymphocytes synergistically inhibits human
                    cholangiocarcinoma cells in vitro. Anticancer Res 2012;32:2249-56.  PubMed
   103   104   105   106   107   108   109   110   111   112   113